Применение смешанной аппроксимации к решению двухмерных задач теории малых упругопластических деформаций методом конечных элементов
dc.contributor.author | Чирков, А.Ю. | |
dc.contributor.author | Ворончук, А.А | |
dc.date.accessioned | 2013-08-02T18:36:41Z | |
dc.date.available | 2013-08-02T18:36:41Z | |
dc.date.issued | 2006 | |
dc.description.abstract | Для решения двухмерных краевых задач теории малых упругопластических деформаций используется треугольный конечный элемент, обеспечивающий устойчивость и сходимость смешанной аппроксимации. Приведена система разрешающих матричных уравнений смешанного метода, для решения которой применяется трехслойный итерационный алгоритм с переобусловливающей матрицей. Сопоставлены численные результаты решения модельных задач, полученные классическим и смешанным методами конечных элементов. | uk_UA |
dc.description.abstract | Для розв’язання двовимірних крайових задач теорії малих пружно-пластичних деформацій використовується трикутний скінченний елемент, що забезпечує стійкість та збіжність змішаної апроксимації. Наведено систему розв’язувальних матричних рівнянь змішаного типу, для розв’язку якої використовується тришаровий ітераційний алгоритм із переобумовлюючою матрицею. Зіставлено числові результати розв’язку модельних задач, що отримані класичним та змішаним методами скінченних елементів. | uk_UA |
dc.description.abstract | For solution of two-dimensional boundary problems of the theory of small-scale elastoplastic deformations we apply a triangular finite element, which provides stability and convergence of the mixed approximation scheme. We present the system of resolving matrix equations of the mixed method, which system is solved using the three-layered iteration algorithm with re-conditioning matrix. We provide comparative analysis of numerical solutions of model problems obtained by the conventional and mixed finite element methods. | uk_UA |
dc.identifier.citation | Применение смешанной аппроксимации к решению двухмерных задач теории малых упругопластических деформаций методом конечных элементов / А.Ю. Чирков, А.А. Ворончук // Проблемы прочности. — 2006. — № 2. — С. 124-136. — Бібліогр.: 10 назв. — рос. | uk_UA |
dc.identifier.issn | 0556-171X | |
dc.identifier.udc | 539.3 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/47837 | |
dc.language.iso | ru | uk_UA |
dc.publisher | Інститут проблем міцності ім. Г.С. Писаренко НАН України | uk_UA |
dc.relation.ispartof | Проблемы прочности | |
dc.status | published earlier | uk_UA |
dc.subject | Научно-технический раздел | uk_UA |
dc.title | Применение смешанной аппроксимации к решению двухмерных задач теории малых упругопластических деформаций методом конечных элементов | uk_UA |
dc.title.alternative | Application of mixed approximation scheme for solution of two-dimensional problems of the theory of small-scale elastoplastic deformations using the finite element method | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 11-Chirkov.pdf
- Розмір:
- 275.47 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: