Integrability, Quantization and Moduli Spaces of Curves

dc.contributor.authorRossi, P.
dc.date.accessioned2019-02-18T18:14:12Z
dc.date.available2019-02-18T18:14:12Z
dc.date.issued2017
dc.description.abstractThis paper has the purpose of presenting in an organic way a new approach to integrable (1+1)-dimensional field systems and their systematic quantization emerging from intersection theory of the moduli space of stable algebraic curves and, in particular, cohomological field theories, Hodge classes and double ramification cycles. This methods are alternative to the traditional Witten-Kontsevich framework and its generalizations by Dubrovin and Zhang and, among other advantages, have the merit of encompassing quantum integrable systems. Most of this material originates from an ongoing collaboration with A. Buryak, B. Dubrovin and J. Guéré.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue on Recent Advances in Quantum Integrable Systems. The full collection is available at http://www.emis.de/journals/SIGMA/RAQIS2016.html. This paper originates in part from my Habilitation m´emoire [34] and in part from an introductory talk I gave at the RAQIS’16 conference held at Geneva, Switzerland, in August 2016. I would like to express my gratitude to its organizers. Moreover I would like to thank my direct collaborators on the DR hierarchy project, A. Buryak, B. Dubrovin and J. Gu´er´e, and the people who supported us with advice and insight, among the others Dimitri Zvonkine, Rahul Pandharipande and Yakov Eliashberg. During this work I was partially supported by a Chaire CNRS/Enseignement superieur 2012–2017 grant.uk_UA
dc.identifier.citationIntegrability, Quantization and Moduli Spaces of Curves / P. Rossi // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 37 назв. — англ.uk_UA
dc.identifier.isbnDOI:10.3842/SIGMA.2017.060
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 14H10; 14H70; 37K10
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148729
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleIntegrability, Quantization and Moduli Spaces of Curvesuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
060-Rossi.pdf
Розмір:
539.04 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: