Superintegrability on Three-Dimensional Riemannian and Relativistic Spaces of Constant Curvature

dc.contributor.authorHerranz, F.J.
dc.contributor.authorBallesteros, Á
dc.date.accessioned2019-02-09T17:13:53Z
dc.date.available2019-02-09T17:13:53Z
dc.date.issued2006
dc.description.abstractA family of classical superintegrable Hamiltonians, depending on an arbitrary radial function, which are defined on the 3D spherical, Euclidean and hyperbolic spaces as well as on the (2+1)D anti-de Sitter, Minkowskian and de Sitter spacetimes is constructed. Such systems admit three integrals of the motion (besides the Hamiltonian) which are explicitly given in terms of ambient and geodesic polar coordinates. The resulting expressions cover the six spaces in a unified way as these are parametrized by two contraction parameters that govern the curvature and the signature of the metric on each space. Next two maximally superintegrable Hamiltonians are identified within the initial superintegrable family by finding the remaining constant of the motion. The former potential is the superposition of a (curved) central harmonic oscillator with other three oscillators or centrifugal barriers (depending on each specific space), so that this generalizes the Smorodinsky-Winternitz system. The latter one is a superposition of the Kepler-Coulomb potential with another two oscillators or centrifugal barriers. As a byproduct, the Laplace-Runge-Lenz vector for these spaces is deduced. Furthermore both potentials are analysed in detail for each particular space. Some comments on their generalization to arbitrary dimension are also presented.uk_UA
dc.description.sponsorshipThis work was partially supported by the Ministerio de Educaci´on y Ciencia (Spain, Project FIS2004-07913) and by the Junta de Castilla y Le´on (Spain, Projects BU04/03 and VA013C05).uk_UA
dc.identifier.citationSuperintegrability on Three-Dimensional Riemannian and Relativistic Spaces of Constant Curvature / F.J. Herranz, Á. Ballesteros // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 43 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2000 Mathematics Subject Classification: 37J35; 22E60; 37J15; 70H06
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/146443
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleSuperintegrability on Three-Dimensional Riemannian and Relativistic Spaces of Constant Curvatureuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
10-Herranz.pdf
Розмір:
336.13 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: