The Third, Fifth and Sixth Painlevé Equations on Weighted Projective Spaces
| dc.contributor.author | Chiba, H. | |
| dc.date.accessioned | 2019-02-14T18:32:39Z | |
| dc.date.available | 2019-02-14T18:32:39Z | |
| dc.date.issued | 2016 | |
| dc.description.abstract | The third, fifth and sixth Painlevé equations are studied by means of the weighted projective spaces CP³(p,q,r,s) with suitable weights (p,q,r,s) determined by the Newton polyhedrons of the equations. Singular normal forms of the equations, symplectic atlases of the spaces of initial conditions, Riccati solutions and Boutroux's coordinates are systematically studied in a unified way with the aid of the orbifold structure of CP³(p,q,r,s) and dynamical systems theory. | uk_UA |
| dc.identifier.citation | The Third, Fifth and Sixth Painlevé Equations on Weighted Projective Spaces / H. Chiba // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 9 назв. — англ. | uk_UA |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2010 Mathematics Subject Classification: 34M35; 34M45; 34M55 | |
| dc.identifier.other | DOI:10.3842/SIGMA.2016.019 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/147432 | |
| dc.language.iso | en | uk_UA |
| dc.publisher | Інститут математики НАН України | uk_UA |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | uk_UA |
| dc.title | The Third, Fifth and Sixth Painlevé Equations on Weighted Projective Spaces | uk_UA |
| dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: