The Third, Fifth and Sixth Painlevé Equations on Weighted Projective Spaces

dc.contributor.authorChiba, H.
dc.date.accessioned2019-02-14T18:32:39Z
dc.date.available2019-02-14T18:32:39Z
dc.date.issued2016
dc.description.abstractThe third, fifth and sixth Painlevé equations are studied by means of the weighted projective spaces CP³(p,q,r,s) with suitable weights (p,q,r,s) determined by the Newton polyhedrons of the equations. Singular normal forms of the equations, symplectic atlases of the spaces of initial conditions, Riccati solutions and Boutroux's coordinates are systematically studied in a unified way with the aid of the orbifold structure of CP³(p,q,r,s) and dynamical systems theory.uk_UA
dc.identifier.citationThe Third, Fifth and Sixth Painlevé Equations on Weighted Projective Spaces / H. Chiba // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 9 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 34M35; 34M45; 34M55
dc.identifier.otherDOI:10.3842/SIGMA.2016.019
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147432
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleThe Third, Fifth and Sixth Painlevé Equations on Weighted Projective Spacesuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
019-Chiba.pdf
Розмір:
430.76 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: