Simplex and Polygon Equations

dc.contributor.authorDimakis, A.
dc.contributor.authorMüller-Hoissen, F.
dc.date.accessioned2019-02-13T16:25:31Z
dc.date.available2019-02-13T16:25:31Z
dc.date.issued2015
dc.description.abstractIt is shown that higher Bruhat orders admit a decomposition into a higher Tamari order, the corresponding dual Tamari order, and a ''mixed order''. We describe simplex equations (including the Yang-Baxter equation) as realizations of higher Bruhat orders. Correspondingly, a family of ''polygon equations'' realizes higher Tamari orders. They generalize the well-known pentagon equation. The structure of simplex and polygon equations is visualized in terms of deformations of maximal chains in posets forming 1-skeletons of polyhedra. The decomposition of higher Bruhat orders induces a reduction of the N-simplex equation to the (N+1)-gon equation, its dual, and a compatibility equation.uk_UA
dc.description.sponsorshipWe have to thank an anonymous referee for comments that led to some corrections in our previous version of Section 2.2.uk_UA
dc.identifier.citationSimplex and Polygon Equations / A. Dimakis, F. Müller-Hoissen // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 107 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 06A06; 06A07; 52Bxx; 82B23
dc.identifier.otherDOI:10.3842/SIGMA.2015.042
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147105
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleSimplex and Polygon Equationsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
042-Dimakis.pdf
Розмір:
2.73 MB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: