Узагальнення теореми Арцела–Асколі

dc.contributor.authorЮрачківський, А.П.
dc.date.accessioned2013-05-15T15:53:16Z
dc.date.available2013-05-15T15:53:16Z
dc.date.issued2011
dc.description.abstractНехай (T, d) – повний псевдометричний простiр, а X – сепарабельний збiжнiсний простiр. Говоримо, що послiдовнiсть (fn) у TX збiгається до f що належить T^X рiвномiрно в точцi x, якщо спiввiдношення fn(xn) → f(x) справджується для всякої збiжної до x послiдовностi (xn). Показано, що для вiдносної компактностi (fn) вiдносно поточково збiжної послiдовностi необхiдною i достатньою є така пара умов: 1) d(fn(xn), fn(x)) → 0 для будь-яких x що належать X i збiжної до x послiдовностi (xn); 2) iснує злiченна послiдовнiсно щiльна множина X0 включена в X така, що всi послiдовностi (fn(x)), x що належить X0, вiдносно компактнi.uk_UA
dc.description.abstractLet (T, d) be a complete pseudometric space and X be a sequentially separable space with axiomatically defined convergence. We say that a sequence (fn) in T^X converges to f belongs T^X uniformly at a point x if the relation fn(xn) → f(x) holds for every sequence (xn) converging to x. It is shown that the following pair of conditions is necessary and sufficient for the relative compactness of (fn) with respect to the pointwise uniform convergence: 1) d(fn(xn), fn(x)) → 0 for all x belongs X and sequences (xn) converging to x; 2) there exists a countable sequentially dense set X0 is included in X such that all the sequences (fn(x)), x belongs X0, are relatively compact.uk_UA
dc.identifier.citationУзагальнення теореми Арцела–Асколі / А.П. Юрачкiвський // Доп. НАН України. — 2011. — № 10. — С. 30-36. — Бібліогр.: 2 назв. — укр.uk_UA
dc.identifier.issn1025-6415
dc.identifier.udc519.56
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/43727
dc.language.isoukuk_UA
dc.publisherВидавничий дім "Академперіодика" НАН Україниuk_UA
dc.relation.ispartofДоповіді НАН України
dc.statuspublished earlieruk_UA
dc.subjectМатематикаuk_UA
dc.titleУзагальнення теореми Арцела–Асколіuk_UA
dc.title.alternativeA generalization of the Arzela–Ascoli theoremuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
05-Yurachkivsky.pdf
Розмір:
147.08 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: