Algebraic Structures on Typed Decorated Rooted Trees

dc.contributor.authorFoissy, Loïc
dc.date.accessioned2026-01-02T08:34:25Z
dc.date.issued2021
dc.description.abstractTypically decorated trees are used by Bruned, Hairer, and Zambotti to describe a renormalisation process on stochastic PDEs. We here study the algebraic structures on these objects: multiple pre-Lie algebras and related operads (generalizing a result by Chapoton and Livernet), noncommutative and cocommutative Hopf algebras (generalizing Grossman and Larson's construction), commutative and noncocommutative Hopf algebras (generalizing Connes and Kreimer's construction), bialgebras in cointeraction (generalizing Calaque, Ebrahimi-Fard, and Manchon's result). We also define families of morphisms and, in particular, we prove that any Connes-Kreimer Hopf algebra of typed and decorated trees is isomorphic to a Connes-Kreimer Hopf algebra of non-typed and decorated trees (the set of decorations of vertices being bigger), through a contraction process, and finally obtain the Bruned-Hairer-Zambotti construction as a subquotient.
dc.identifier.citationAlgebraic Structures on Typed Decorated Rooted Trees. Loïc Foissy. SIGMA 17 (2021), 086, 28 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2021.086
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 05C05; 16T30; 18D50; 17D25
dc.identifier.otherarXiv:1811.07572
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211441
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleAlgebraic Structures on Typed Decorated Rooted Trees
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
086-Foissy.pdf
Розмір:
547.21 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: