Независимые линейные статистики на конечных абелевых группах

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

Наведено повний опис класу всіх скінченних абелевих груп X, для яких з незалежиосты лінійних статистик L₁=α₁(ξ₁)+α₂(ξ₂)+α₃(ξ₃) та L₂=β₁(ξ₁)+β₂(ξ₂)+β₃(ξ₃) (ξj,j=1,2,3, — незалежны випадковы величини зi значеннями в X i з розподілами μj,αj,βj — автоморфізми групи X) випливає, що або один, або два, або три з розподилів μj є ідемпотентами.
We give a complete description of the class of all finite Abelian groups X for which the independence of linear statistics L₁=α₁(ξ₁)+α₂(ξ₂)+α₃(ξ₃) та L₂=β₁(ξ₁)+β₂(ξ₂)+β₃(ξ₃) (ξj,j=1,2,3, are independent random variables with values in X and distributions μ j ; α j and β j are automorphisms of X) implies that either one, or two, or three of the distributions μ j are idempotent

Опис

Теми

Статті

Цитування

Независимые линейные статистики на конечных абелевых группах / П. Грачик, Г.М. Фельдман // Український математичний журнал. — 2001. — Т. 53, № 4. — С. 441-448. — Бібліогр.: 15 назв. — рос.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced