A New Class of Integrable Maps of the Plane: Manin Transformations with Involution Curves

dc.contributor.authorvan der Kamp, Peter H.
dc.date.accessioned2025-12-30T15:54:58Z
dc.date.issued2021
dc.description.abstractFor cubic pencils, we define the notion of an involution curve. This is a curve that intersects each curve of the pencil in exactly one non-base point of the pencil. Involution curves can be used to construct integrable maps of the plane that leave invariant a cubic pencil.
dc.description.sponsorshipThe author is grateful for the useful and detailed comments made by the referees, in particular, for the further simplification of the map, and the comment about infinitely near base points.
dc.identifier.citationA New Class of Integrable Maps of the Plane: Manin Transformations with Involution Curves. Peter H. van der Kamp. SIGMA 17 (2021), 067, 14 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2021.067
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 14E05; 14H70; 37J70; 37K60
dc.identifier.otherarXiv:2009.09854
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211356
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleA New Class of Integrable Maps of the Plane: Manin Transformations with Involution Curves
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
067-Kamp.pdf
Розмір:
436.34 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: