The Fourier Transform on Quantum Euclidean Space

dc.contributor.authorCoulembier, K.
dc.date.accessioned2019-02-13T18:04:53Z
dc.date.available2019-02-13T18:04:53Z
dc.date.issued2011
dc.description.abstractWe study Fourier theory on quantum Euclidean space. A modified version of the general definition of the Fourier transform on a quantum space is used and its inverse is constructed. The Fourier transforms can be defined by their Bochner's relations and a new type of q-Hankel transforms using the first and second q-Bessel functions. The behavior of the Fourier transforms with respect to partial derivatives and multiplication with variables is studied. The Fourier transform acts between the two representation spaces for the harmonic oscillator on quantum Euclidean space. By using this property it is possible to define a Fourier transform on the entire Hilbert space of the harmonic oscillator, which is its own inverse and satisfies the Parseval theorem.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue “Relationship of Orthogonal Polynomials and Special Functions with Quantum Groups and Integrable Systems”. The full collection is available at http://www.emis.de/journals/SIGMA/OPSF.html. The author would like to thank Hendrik De Bie for helpful suggestions and comments.uk_UA
dc.identifier.citationThe Fourier Transform on Quantum Euclidean Space / K. Coulembier // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 36 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 17B37; 81R60; 33D50
dc.identifier.otherDOI:10.3842/SIGMA.2011.047
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147167
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleThe Fourier Transform on Quantum Euclidean Spaceuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
047-Coulembier.pdf
Розмір:
570.74 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: