Generalised Umbral Moonshine

dc.contributor.authorCheng, M.C.N.
dc.contributor.authorde Lange, P.
dc.contributor.authorWhalen, D.P.Z.
dc.date.accessioned2025-12-02T09:33:08Z
dc.date.issued2019
dc.description.abstractUmbral moonshine describes an unexpected relation between 23 finite groups arising from lattice symmetries and special mock modular forms. It includes the Mathieu moonshine as a special case and can itself be viewed as an example of the more general moonshine phenomenon, which connects finite groups and distinguished modular objects. In this paper, we introduce the notion of generalised umbral moonshine, which includes the generalised Mathieu moonshine [Gaberdiel M.R., Persson D., Ronellenfitsch H., Volpato R., Commun. Number Theory Phys. 7 (2013), 145-223] as a special case, and provide supporting data for it. A central role is played by the deformed Drinfeld (or quantum) double of each umbral finite group G, specified by a cohomology class in H³(G, U(1)). We conjecture that in each of the 23 cases, there exists a rule to assign an infinite-dimensional module for the deformed Drinfeld double of the umbral finite group underlying the mock modular forms of umbral moonshine and generalised umbral moonshine. We also discuss the possible origin of the generalised umbral moonshine.
dc.description.sponsorshipWe are grateful to John Duncan, Simon Lentner, Terry Gannon, and Erik Verlinde for helpful discussions. We especially thank John Duncan for many of the group descriptions and for helpful comments on an earlier version of the manuscript. The work of M.C. and D.W. was supported by an ERC starting grant H2020 ERC StG 2014.
dc.identifier.citationGeneralised Umbral Moonshine / M.C.N. Cheng, P. de Lange, D.P.Z. Whalen // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 57 назв. — англ.
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2019.014
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 11F22; 11F37; 20C34
dc.identifier.otherarXiv: 1608.07835
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/210061
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleGeneralised Umbral Moonshine
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
014-Cheng.pdf
Розмір:
526.28 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: