Width, Largeness and Index Theory
| dc.contributor.author | Zeidler, Rudolf | |
| dc.date.accessioned | 2025-12-23T13:13:41Z | |
| dc.date.issued | 2020 | |
| dc.description.abstract | In this note, we review some recent developments related to metric aspects of scalar curvature from the point of view of index theory for Dirac operators. In particular, we revisit index-theoretic approaches to a conjecture of Gromov on the width of Riemannian bands 𝑀 × [−1, 1], and on a conjecture of Rosenberg and Stolz on the non-existence of complete positive scalar curvature metrics on 𝑀 × ℝ. We show that there is a more general geometric statement underlying both of them, implying a quantitative negative upper bound on the infimum of the scalar curvature of a complete metric on 𝑀 × ℝ if the scalar curvature is positive in some neighborhood. We study (A^-)iso-enlargeable spin manifolds and related notions of width for Riemannian manifolds from an index-theoretic point of view. Finally, we list some open problems arising in the interplay between index theory, largeness properties, and width. | |
| dc.description.sponsorship | Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), ProjectID 427320536– SFB 1442, as well as under Germany’s Excellence Strategy EXC 2044 390685587, Mathematics Münster: Dynamics–Geometry–Structure. Moreover, part of the research pertaining to this article was conducted while the author was employed at the University of Göttingen, funded through the DFG RTG 2491 Fourier Analysis and Spectral Theory. | |
| dc.identifier.citation | Width, Largeness and Index Theory. Rudolf Zeidler. SIGMA 16 (2020), 127, 15 pages | |
| dc.identifier.doi | https://doi.org/10.3842/SIGMA.2020.127 | |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2020 Mathematics Subject Classification: 58J22; 19K56; 53C21; 53C23 | |
| dc.identifier.other | arXiv:2008.13754 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/211092 | |
| dc.language.iso | en | |
| dc.publisher | Інститут математики НАН України | |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | |
| dc.title | Width, Largeness and Index Theory | |
| dc.type | Article |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 127-Zeidler.pdf
- Розмір:
- 484.68 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: