Width, Largeness and Index Theory

dc.contributor.authorZeidler, Rudolf
dc.date.accessioned2025-12-23T13:13:41Z
dc.date.issued2020
dc.description.abstractIn this note, we review some recent developments related to metric aspects of scalar curvature from the point of view of index theory for Dirac operators. In particular, we revisit index-theoretic approaches to a conjecture of Gromov on the width of Riemannian bands 𝑀 × [−1, 1], and on a conjecture of Rosenberg and Stolz on the non-existence of complete positive scalar curvature metrics on 𝑀 × ℝ. We show that there is a more general geometric statement underlying both of them, implying a quantitative negative upper bound on the infimum of the scalar curvature of a complete metric on 𝑀 × ℝ if the scalar curvature is positive in some neighborhood. We study (A^-)iso-enlargeable spin manifolds and related notions of width for Riemannian manifolds from an index-theoretic point of view. Finally, we list some open problems arising in the interplay between index theory, largeness properties, and width.
dc.description.sponsorshipFunded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), ProjectID 427320536– SFB 1442, as well as under Germany’s Excellence Strategy EXC 2044 390685587, Mathematics Münster: Dynamics–Geometry–Structure. Moreover, part of the research pertaining to this article was conducted while the author was employed at the University of Göttingen, funded through the DFG RTG 2491 Fourier Analysis and Spectral Theory.
dc.identifier.citationWidth, Largeness and Index Theory. Rudolf Zeidler. SIGMA 16 (2020), 127, 15 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2020.127
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 58J22; 19K56; 53C21; 53C23
dc.identifier.otherarXiv:2008.13754
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211092
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleWidth, Largeness and Index Theory
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
127-Zeidler.pdf
Розмір:
484.68 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: