Einstein Gravity, Lagrange-Finsler Geometry, and Nonsymmetric Metrics

dc.contributor.authorVacaru, S.I.
dc.date.accessioned2019-02-19T12:56:53Z
dc.date.available2019-02-19T12:56:53Z
dc.date.issued2008
dc.description.abstractWe formulate an approach to the geometry of Riemann-Cartan spaces provided with nonholonomic distributions defined by generic off-diagonal and nonsymmetric metrics inducing effective nonlinear and affine connections. Such geometries can be modelled by moving nonholonomic frames on (pseudo) Riemannian manifolds and describe various types of nonholonomic Einstein, Eisenhart-Moffat and Finsler-Lagrange spaces with connections compatible to a general nonsymmetric metric structure. Elaborating a metrization procedure for arbitrary distinguished connections, we define the class of distinguished linear connections which are compatible with the nonlinear connection and general nonsymmetric metric structures. The nonsymmetric gravity theory is formulated in terms of metric compatible connections. Finally, there are constructed such nonholonomic deformations of geometric structures when the Einstein and/or Lagrange-Finsler manifolds are transformed equivalently into spaces with generic local anisotropy induced by nonsymmetric metrics and generalized connections. We speculate on possible applications of such geometric methods in Einstein and generalized theories of gravity, analogous gravity and geometric mechanics.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue “Elie Cartan and Differential Geometry”. The work is performed during a visit at Fields Institute. Author is grateful to Professors M. Anastasiei and J. Mof fat for kind support.uk_UA
dc.identifier.citationEinstein Gravity, Lagrange-Finsler Geometry, and Nonsymmetric Metrics / S.I. Vacaru // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 45 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2000 Mathematics Subject Classification: 53A99; 53B40; 53C21; 53C12; 53C44; 53Z05; 83C20; 83D05; 83C99
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/149011
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleEinstein Gravity, Lagrange-Finsler Geometry, and Nonsymmetric Metricsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
71-Vacaru.pdf
Розмір:
436.98 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: