Splitting the eigenvectors space for Kildal’s Hamiltonian

dc.contributor.authorChuiko, G.P.
dc.contributor.authorDon, N.L.
dc.date.accessioned2017-05-30T16:25:10Z
dc.date.available2017-05-30T16:25:10Z
dc.date.issued2010
dc.description.abstractThe rational canonical form of Kildal’s Hamiltonian has been obtained as a matrix with two identical diagonal blocks. It allowed to formulate and strictly prove few common assertions. Each of the eigenvalues of Kildal’s Hamiltonian is twice degenerated everywhere, and it is well-known Kramers’ degeneration, firstly. However, there is neither degeneration with except for Kramers’, secondly. The symmetry of Kildal’s Hamiltonian forcedly includes the operation of inversion (i.e. the center of symmetry), thirdly. Consequently this form of Hamiltonian is evidently not able to describe the specific properties of crystals without the center of symmetry. The Frobenius form (alias “the rational canonical form”) of Hamiltonian should consist of two non-identical diagonal blocks to remove Kramers’ degeneration.uk_UA
dc.identifier.citationSplitting the eigenvectors space for Kildal’s Hamiltonian / G.P. Chuiko, N.L. Don // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2010. — Т. 13, № 4. — С. 366-368. — Бібліогр.: 6 назв. — англ.uk_UA
dc.identifier.issn1560-8034
dc.identifier.otherPACS 71.18.+y, 71.20.-b
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/118570
dc.language.isoenuk_UA
dc.publisherІнститут фізики напівпровідників імені В.Є. Лашкарьова НАН Україниuk_UA
dc.relation.ispartofSemiconductor Physics Quantum Electronics & Optoelectronics
dc.statuspublished earlieruk_UA
dc.titleSplitting the eigenvectors space for Kildal’s Hamiltonianuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
7-Chuiko.pdf
Розмір:
99.09 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: