Splitting the eigenvectors space for Kildal’s Hamiltonian
dc.contributor.author | Chuiko, G.P. | |
dc.contributor.author | Don, N.L. | |
dc.date.accessioned | 2017-05-30T16:25:10Z | |
dc.date.available | 2017-05-30T16:25:10Z | |
dc.date.issued | 2010 | |
dc.description.abstract | The rational canonical form of Kildal’s Hamiltonian has been obtained as a matrix with two identical diagonal blocks. It allowed to formulate and strictly prove few common assertions. Each of the eigenvalues of Kildal’s Hamiltonian is twice degenerated everywhere, and it is well-known Kramers’ degeneration, firstly. However, there is neither degeneration with except for Kramers’, secondly. The symmetry of Kildal’s Hamiltonian forcedly includes the operation of inversion (i.e. the center of symmetry), thirdly. Consequently this form of Hamiltonian is evidently not able to describe the specific properties of crystals without the center of symmetry. The Frobenius form (alias “the rational canonical form”) of Hamiltonian should consist of two non-identical diagonal blocks to remove Kramers’ degeneration. | uk_UA |
dc.identifier.citation | Splitting the eigenvectors space for Kildal’s Hamiltonian / G.P. Chuiko, N.L. Don // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2010. — Т. 13, № 4. — С. 366-368. — Бібліогр.: 6 назв. — англ. | uk_UA |
dc.identifier.issn | 1560-8034 | |
dc.identifier.other | PACS 71.18.+y, 71.20.-b | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/118570 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України | uk_UA |
dc.relation.ispartof | Semiconductor Physics Quantum Electronics & Optoelectronics | |
dc.status | published earlier | uk_UA |
dc.title | Splitting the eigenvectors space for Kildal’s Hamiltonian | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: