Image Enhancement In Video Analytics Systems

dc.contributor.authorGolovin, O.M.
dc.date.accessioned2021-11-07T18:31:07Z
dc.date.available2021-11-07T18:31:07Z
dc.date.issued2020
dc.description.abstractRecently, video analytics systems are rapidly evolving, and the effectiveness of their work depends primarily on the quality of operations at the initial level of the entire processing process, namely the quality of segmentation of objects in the scene and their recognition. Successful performance of these procedures is primarily due to image quality, which depends on many factors: technical parameters of video sensors, low or uneven lighting, changes in lighting levels of the scene due to weather conditions, time changes in illumination, or changes in scenarios in the scene. This paper presents a new, accurate, and practical method for assessing the improvement of image quality in automatic mode. The method is based on the use of nonlinear transformation function, namely, gamma correction, which reflects properties of a human visual system, effectively reduces the negative impact of changes in scene illumination and due to simple adjustment and effective implementation is widely used in practice. The technique of selection in an automatic mode of the optimum value of the gamma parameter at which the corrected image reaches the maximum quality is developed.uk_UA
dc.description.abstractРозроблено метод для визначення оптимального значення параметра гамма-корекції зображень, при якому забезпечується вибір в автоматичному режимі найбільш якісного зображення сцени для подальшої обробки. Метод відрізняється здатністю приведення якості зображення до максимально можливого рівня якості в автоматичному режимі та наявними елементами адаптивності до змін у режимі освітленості сцени уваги.uk_UA
dc.description.abstractРазработан метод для определения оптимального значения параметра гамма коррекции изображений, при котором обеспечивается выбор в автоматическом режиме наиболее качественного изображения сцены для дальнейшей обработки. Метод отличается способностью приведения качества изображения к максимально возможному уровню качества в автоматическом режиме и имеющимися элементами адаптивности к изменениям в режиме освещенности сцены внимания.uk_UA
dc.identifier.citationImage Enhancement In Video Analytics Systems / O.M. Golovin // Control systems & computers. — 2020. — № 6. — С. 3-20. — Бібліогр.: 17 назв. — англ.uk_UA
dc.identifier.issn2706-8145
dc.identifier.otherDOI https://doi.org/10.15407/csc.2020.06.003
dc.identifier.udc364.2:331
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/181231
dc.language.isoenuk_UA
dc.publisherМіжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН Україниuk_UA
dc.relation.ispartofControl systems & computers
dc.statuspublished earlieruk_UA
dc.subjectFundamental Problems in Computer Scienceuk_UA
dc.titleImage Enhancement In Video Analytics Systemsuk_UA
dc.title.alternativeПокращення зображень в системах відеоаналітикиuk_UA
dc.title.alternativeУлучшения изображений в системах видеоаналитикиuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
01-Golovin.pdf
Розмір:
3.76 MB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: