Fukaya Categories as Categorical Morse Homology

dc.contributor.authorNadler, D.
dc.date.accessioned2019-02-11T16:52:22Z
dc.date.available2019-02-11T16:52:22Z
dc.date.issued2014
dc.description.abstractThe Fukaya category of a Weinstein manifold is an intricate symplectic invariant of high interest in mirror symmetry and geometric representation theory. This paper informally sketches how, in analogy with Morse homology, the Fukaya category might result from gluing together Fukaya categories of Weinstein cells. This can be formalized by a recollement pattern for Lagrangian branes parallel to that for constructible sheaves. Assuming this structure, we exhibit the Fukaya category as the global sections of a sheaf on the conic topology of the Weinstein manifold. This can be viewed as a symplectic analogue of the well-known algebraic and topological theories of (micro)localization.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue “Mirror Symmetry and Related Topics”. The full collection is available at http://www.emis.de/journals/SIGMA/mirror symmetry.html. I am indebted to D. Ben-Zvi, P. Seidel and E. Zaslow for the impact they have had on my thinking about symplectic and homotopical geometry. I am grateful to T. Perutz and D. Treumann for many stimulating discussions, both of a technical and philosophical nature. I am grateful to M. Abouzaid and D. Auroux for their patient explanations of foundational issues and related questions in mirror symmetry. I am also grateful to the anonymous referees for their thoughtful reading and generous investment in improving the paper. I would like to thank A. Preygel for sharing his perspective on ind-coherent sheaves. I am also pleased to acknowledge the motivating influence of a question asked by C. Teleman at ESI in Vienna in January 2007. Finally, I am grateful to the participants of the June 2011 MIT RTG Geometry retreat for their inspiring interest in this topic. This work was supported by NSF grant DMS-0600909.uk_UA
dc.identifier.citationFukaya Categories as Categorical Morse Homology / D. Nadler // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 75 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 53D37
dc.identifier.otherDOI:10.3842/SIGMA.2014.018
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/146836
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleFukaya Categories as Categorical Morse Homologyuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
99-Nadler.pdf
Розмір:
685.5 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: