A Kähler Compatible Moyal Deformation of the First Heavenly Equation

dc.contributor.authorMaceda, M.
dc.contributor.authorMartínez-Carbajal, D.
dc.date.accessioned2025-12-04T13:01:15Z
dc.date.issued2019
dc.description.abstractWe construct a noncommutative Kähler manifold based on a non-linear perturbation of Moyal integrable deformations of D=4 self-dual gravity. The deformed Kähler manifold preserves all the properties of the commutative one, and we obtain the associated noncommutative Kähler potential using the Moyal deformed gravity approach. We apply this construction to the Atiyah-Hitchin metric and its Kähler potential, which is useful in the description of interactions among magnetic monopoles at low energies.
dc.description.sponsorshipThe authors would like to thank the referees for their valuable remarks and suggestions to improve this work. D. Martínez-Carbajal acknowledges support from Universidad Autónoma Metropolitana (UAM, México).
dc.identifier.citationA Kähler Compatible Moyal Deformation of the First Heavenly Equation / M. Maceda, D. Martínez-Carbajal // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 43 назв. — англ.
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2019.073
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 37K10; 53C26; 53D55; 70H06; 83C20
dc.identifier.otherarXiv: 1904.09323
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/210222
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleA Kähler Compatible Moyal Deformation of the First Heavenly Equation
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
073-Maceda.pdf
Розмір:
368.58 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: