Diagonalizability theorems for matrices over rings with finite stable range

dc.contributor.authorZabavsky, B.
dc.date.accessioned2019-06-18T17:49:22Z
dc.date.available2019-06-18T17:49:22Z
dc.date.issued2005
dc.description.abstractWe construct the theory of diagonalizability for matrices over Bezout ring with finite stable range. It is shown that every commutative Bezout ring with compact minimal prime spectrum is Hermite. It is also shown that a principal ideal domain with stable range 1 is Euclidean domain, and every semilocal principal ideal domain is Euclidean domain. It is proved that every matrix over an elementary divisor ring can be reduced to "almost" diagonal matrix by elementary transformations.uk_UA
dc.description.sponsorshipDedicated to Yu.A. Drozd on the occasion of his 60th birthdayuk_UA
dc.identifier.citationDiagonalizability theorems for matrices over rings with finite stable range / B. Zabavsky // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 151–165. — Бібліогр.: 35 назв. — англ.uk_UA
dc.identifier.issn1726-3255
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/156607
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titleDiagonalizability theorems for matrices over rings with finite stable rangeuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
13-Zabavsky.pdf
Розмір:
176.02 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: