Counting Periodic Trajectories of Finsler Billiards

dc.contributor.authorBlagojević, Pavle V.M.
dc.contributor.authorHarrison, Michael
dc.contributor.authorTabachnikov, Serge
dc.contributor.authorZiegler, Günter M.
dc.date.accessioned2025-12-12T10:31:40Z
dc.date.issued2020
dc.description.abstractWe provide lower bounds on the number of periodic Finsler billiard trajectories inside a quadratically convex smooth closed hypersurface M in a 𝑑-dimensional Finsler space with possibly irreversible Finsler metric. An example of such a system is a billiard in a sufficiently weak magnetic field. The 𝑟-periodic Finsler billiard trajectories correspond to 𝑟-gons inscribed in M and having extremal Finsler length. The cyclic group ℤᵣ acts on these extremal polygons, and one counts the ℤᵣ-orbits. Using Morse and Lusternik-Schnirelmann theories, we prove that if 𝑟 ≥ 3 is prime, then the number of 𝑟-periodic Finsler billiard trajectories is not less than (𝑟−1)(𝑑−2)+1. We also give stronger lower bounds when M is in general position. The problem of estimating the number of periodic billiard trajectories from below goes back to Birkhoff. Our work extends to the Finsler setting, the results previously obtained for Euclidean billiards by Babenko, Farber, Tabachnikov, and Karasev.
dc.description.sponsorshipWe are grateful to Sergei Ivanov for useful discussions on Finsler geometry, and we are grateful to the following sources of funding. Pavle V. M. Blagojevic, Serge Tabachnikov, and Gunter M. Ziegler were supported by the DFG via the Collaborative Research Center TRR 109 Discretization in Geometry and Dynamics. Pavle V. M. Blagojevic was supported by the grant ON 174024 of the Serbian Ministry of Education and Science. Michael Harrison and Serge Tabachnikov were supported by the NSF grant DMS-1510055. We are also grateful to the referees for their suggestions.
dc.identifier.citationCounting Periodic Trajectories of Finsler Billiards. Pavle V.M. Blagojević, Michael Harrison, Serge Tabachnikov and Günter M. Ziegler. SIGMA 16 (2020), 022, 33 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2020.022
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 37J45; 55R80; 70H12
dc.identifier.otherarXiv:1712.07930
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/210588
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleCounting Periodic Trajectories of Finsler Billiards
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
022-Blagojević.pdf
Розмір:
1.01 MB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: