Spherical Fourier Transforms on Locally Compact Quantum Gelfand Pairs
dc.contributor.author | Caspers, M. | |
dc.date.accessioned | 2019-02-14T16:55:15Z | |
dc.date.available | 2019-02-14T16:55:15Z | |
dc.date.issued | 2011 | |
dc.description.abstract | We study Gelfand pairs for locally compact quantum groups. We give an operator algebraic interpretation and show that the quantum Plancherel transformation restricts to a spherical Plancherel transformation. As an example, we turn the quantum group analogue of the normaliser of SU(1,1) in SL(2,C) together with its diagonal subgroup into a pair for which every irreducible corepresentation admits at most two vectors that are invariant with respect to the quantum subgroup. Using a Z₂-grading, we obtain product formulae for little q-Jacobi functions. | uk_UA |
dc.description.sponsorship | This paper is a contribution to the Special Issue “Relationship of Orthogonal Polynomials and Special Functions with Quantum Groups and Integrable Systems”. The full collection is available at http://www.emis.de/journals/SIGMA/OPSF.html. The author likes to thank Erik Koelink for the useful discussions and Noud Aldenhoven for providing Fig. 1. Also, the author benefits from a detailed referee report. | uk_UA |
dc.identifier.citation | Spherical Fourier Transforms on Locally Compact Quantum Gelfand Pairs / M. Caspers // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 44 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | 2010 Mathematics Subject Classification: 16T99; 43A90 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/147385 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | Spherical Fourier Transforms on Locally Compact Quantum Gelfand Pairs | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 087-Caspers.pdf
- Розмір:
- 695.67 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: