An Infinite-Dimensional □q-Module Obtained from the q-Shuffle Algebra for Affine sl₂
| dc.contributor.author | Post, Sarah | |
| dc.contributor.author | Terwilliger, Paul | |
| dc.date.accessioned | 2025-12-15T15:29:22Z | |
| dc.date.issued | 2020 | |
| dc.description.abstract | Let 𝔽 denote a field, and pick a nonzero q ∈ 𝔽 that is not a root of unity. Let ℤ₄ = ℤ/4ℤ denote the cyclic group of order 4. Define a unital associative 𝔽-algebra □q by generators {xᵢ}ᵢ∈ℤ4 and relations (qxᵢxᵢ₊₁ − q⁻¹xᵢ₊₁xᵢ)/(q−q⁻¹) = 1, x³ᵢxᵢ₊₂ − [3]qx²ᵢxᵢ + ₂xᵢ + [3]qxᵢxᵢ₊₂x²ᵢ − xᵢ₊₂x³ᵢ=0, where [3]q=(q³−q⁻³)/(q−q⁻¹). Let V denote a □q-module. A vector ξ ∈ V is called NIL whenever x₁ξ = 0 and x₃ξ = 0, and ξ≠0. The □q-module V is called NIL whenever V is generated by a NIL vector. We show that up to isomorphism, there exists a unique NIL □q-module, and it is irreducible and infinite-dimensional. We describe this module from sixteen points of view. In this description, an important role is played by the q-shuffle algebra for affine sl₂. | |
| dc.description.sponsorship | The first author acknowledges support by the Simons Foundation Collaboration Grant 3192112. The second author thanks Marc Rosso and Xin Fang for helpful comments about q-shuffle algebras. | |
| dc.identifier.citation | An Infinite-Dimensional □q-Module Obtained from the q-Shuffle Algebra for Affine sl₂. Sarah Post and Paul Terwilliger. SIGMA 16 (2020), 037, 35 pages | |
| dc.identifier.doi | https://doi.org/10.3842/SIGMA.2020.037 | |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2020 Mathematics Subject Classification: 17B37 | |
| dc.identifier.other | arXiv:1806.10007 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/210713 | |
| dc.language.iso | en | |
| dc.publisher | Інститут математики НАН України | |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | |
| dc.title | An Infinite-Dimensional □q-Module Obtained from the q-Shuffle Algebra for Affine sl₂ | |
| dc.type | Article |
Файли
Оригінальний контейнер
1 - 1 з 1
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: