Сходимость двухэтапного проксимального алгоритма для задачи о равновесии в пространствах Адамара
Loading...
Files
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Інститут кібернетики ім. В.М. Глушкова НАН України
Abstract
Рассмотрен итерационный двухэтапный проксимальный алгоритм для приближенного решения задач о равновесии в пространствах Адамара. Данный алгоритм является аналогом ранее изученного двухэтапного алгоритма для задач о равновесии в гильбертовом пространстве. Для псевдомонотонных бифункций липшицевого типа доказана теорема о слабой сходимости порожденных алгоритмом последовательностей.
Запропоновано ітераційний двоетапний проксимальний алгоритм для наближеного розв'язання задач про рівновагу в просторах Адамара. Цей алгоритм є аналогом раніше дослідженого двоетапного алгоритму для задач про рівновагу в гільбертовому просторі. Для псевдомонотонних біфункцій ліпшицевого типу доведено теорему про слабку збіжність послідовностей, що породжені алгоритмом.
An iterative two-stage proximal algorithm for the approximate solution of equilibrium problems in Hadamard spaces is proposed. This algorithm is an analog of the previously studied two-stage algorithm for equilibrium problems in Hilbert space. For Lipschitz-type pseudo-monotone bifunctions, a theorem on the weak convergence of sequences generated by the algorithm is proved.
Запропоновано ітераційний двоетапний проксимальний алгоритм для наближеного розв'язання задач про рівновагу в просторах Адамара. Цей алгоритм є аналогом раніше дослідженого двоетапного алгоритму для задач про рівновагу в гільбертовому просторі. Для псевдомонотонних біфункцій ліпшицевого типу доведено теорему про слабку збіжність послідовностей, що породжені алгоритмом.
An iterative two-stage proximal algorithm for the approximate solution of equilibrium problems in Hadamard spaces is proposed. This algorithm is an analog of the previously studied two-stage algorithm for equilibrium problems in Hilbert space. For Lipschitz-type pseudo-monotone bifunctions, a theorem on the weak convergence of sequences generated by the algorithm is proved.
Description
Keywords
Системний аналіз
Citation
Сходимость двухэтапного проксимального алгоритма для задачи о равновесии в пространствах Адамара / Я.И. Ведель, Г.В. Сандраков, В.В. Семенов, Л.М. Чабак // Кибернетика и системный анализ. — 2020. — Т. 56, № 5. — С. 115–125. — Бібліогр.: 31 назв. — рос.