Modular Form Representation for Periods of Hyperelliptic Integrals

dc.contributor.authorEilers, K.
dc.date.accessioned2019-02-15T18:37:46Z
dc.date.available2019-02-15T18:37:46Z
dc.date.issued2016
dc.description.abstractTo every hyperelliptic curve one can assign the periods of the integrals over the holomorphic and the meromorphic differentials. By comparing two representations of the so-called projective connection it is possible to reexpress the latter periods by the first. This leads to expressions including only the curve's parameters λj and modular forms. By a change of basis of the meromorphic differentials one can further simplify this expression. We discuss the advantages of these explicitly given bases, which we call Baker and Klein basis, respectively.uk_UA
dc.description.sponsorshipThe author is grateful to V. Enolski for useful discussion and constant interest to the work, and also to all referees, whose comments promoted a further improvement of the text. In especially the author wants to mention the contribution of the anonymous referee, who reported formula (5.3) and reminded us of Fay’s Corollary 2.12 [7], which essentially improved our initial statements. Also the author gratefully acknowledges the Deutsche Forschungsgemeinschaft (DFG) for financial support within the framework of the DFG Research Training group 1620 Models of gravity.uk_UA
dc.identifier.citationModular Form Representation for Periods of Hyperelliptic Integrals / K. Eilers // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 10 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 14H42; 30F30
dc.identifier.otherDOI:10.3842/SIGMA.2016.060
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147719
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleModular Form Representation for Periods of Hyperelliptic Integralsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
060-Eilers.pdf
Розмір:
418.48 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: