A Compact Formula for Rotations as Spin Matrix Polynomials

dc.contributor.authorCurtright, T.L.
dc.contributor.authorFairlie, D.B.
dc.contributor.authorZachos, C.K.
dc.date.accessioned2019-02-10T10:05:29Z
dc.date.available2019-02-10T10:05:29Z
dc.date.issued2014
dc.description.abstractGroup elements of SU(2) are expressed in closed form as finite polynomials of the Lie algebra generators, for all definite spin representations of the rotation group. The simple explicit result exhibits connections between group theory, combinatorics, and Fourier analysis, especially in the large spin limit. Salient intuitive features of the formula are illustrated and discussed.uk_UA
dc.description.sponsorshipThe submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy Of fice of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. It was also supported in part by NSF Award PHY-1214521. TLC was also supported in part by a University of Miami Cooper Fellowship. S. Dowker is thanked for bringing ref [12], and whence [5], to our attention. An anonymous referee is especially thanked for bringing [14] and more importantly [13] to our attention.uk_UA
dc.identifier.citationA Compact Formula for Rotations as Spin Matrix Polynomials / T.L. Curtright, D.B.Fairlie, C.K. Zachos // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 17 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 15A16; 15A30
dc.identifier.otherDOI:10.3842/SIGMA.2014.084
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/146616
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleA Compact Formula for Rotations as Spin Matrix Polynomialsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
33-Curtright.pdf
Розмір:
390.86 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: