On divergence and sums of derivations

dc.contributor.authorChapovsky, E.
dc.contributor.authorShevchyk, O.
dc.date.accessioned2019-06-18T10:24:34Z
dc.date.available2019-06-18T10:24:34Z
dc.date.issued2017
dc.description.abstractLet K be an algebraically closed field of characteristic zero and A a field of algebraic functions in n variables over K. (i.e. A is a finite dimensional algebraic extension of the field K(x1,…,xn) ). If D is a K-derivation of A, then its divergence divD is an important geometric characteristic of D (D can be considered as a vector field with coefficients in A). A relation between expressions of divD in different transcendence bases of A is pointed out. It is also proved that every divergence-free derivation D on the polynomial ring K[x,y,z] is a sum of at most two jacobian derivation.uk_UA
dc.identifier.citationOn divergence and sums of derivations / E. Chapovsky, O. Shevchyk // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 99-105. — Бібліогр.: 5 назв. — англ.uk_UA
dc.identifier.issn1726-3255
dc.identifier.other2010 MSC:Primary 13N15; Secondary 13A99, 17B66.
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/156256
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titleOn divergence and sums of derivationsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
07-Chapovsky.pdf
Розмір:
288.92 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: