On divergence and sums of derivations
| dc.contributor.author | Chapovsky, E. | |
| dc.contributor.author | Shevchyk, O. | |
| dc.date.accessioned | 2019-06-18T10:24:34Z | |
| dc.date.available | 2019-06-18T10:24:34Z | |
| dc.date.issued | 2017 | |
| dc.description.abstract | Let K be an algebraically closed field of characteristic zero and A a field of algebraic functions in n variables over K. (i.e. A is a finite dimensional algebraic extension of the field K(x1,…,xn) ). If D is a K-derivation of A, then its divergence divD is an important geometric characteristic of D (D can be considered as a vector field with coefficients in A). A relation between expressions of divD in different transcendence bases of A is pointed out. It is also proved that every divergence-free derivation D on the polynomial ring K[x,y,z] is a sum of at most two jacobian derivation. | uk_UA |
| dc.identifier.citation | On divergence and sums of derivations / E. Chapovsky, O. Shevchyk // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 99-105. — Бібліогр.: 5 назв. — англ. | uk_UA |
| dc.identifier.issn | 1726-3255 | |
| dc.identifier.other | 2010 MSC:Primary 13N15; Secondary 13A99, 17B66. | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/156256 | |
| dc.language.iso | en | uk_UA |
| dc.publisher | Інститут прикладної математики і механіки НАН України | uk_UA |
| dc.relation.ispartof | Algebra and Discrete Mathematics | |
| dc.status | published earlier | uk_UA |
| dc.title | On divergence and sums of derivations | uk_UA |
| dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 07-Chapovsky.pdf
- Розмір:
- 288.92 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: