Смешанная проекционно-сеточная схема метода конечных элементов для решения краевых задач теории малых упругопластических деформаций

dc.contributor.authorЧирков, А.Ю.
dc.date.accessioned2013-07-10T04:11:44Z
dc.date.available2013-07-10T04:11:44Z
dc.date.issued2004
dc.description.abstractСформулирована смешанная проекционно-сеточная схема решения нелинейных краевых задач теории малых упругопластических деформаций. Исследована корректность и сходимость смешанных аппроксимаций для напряжений, деформаций и перемещений. Подробно изучены свойства проектирующих операторов, на основе чего сформулировано условие, обеспечивающее существование, единственность и устойчивость решения дискретной задачи. Представлены результаты анализа применения численного интегрирования. Оценки сходимости и точности базируются на теории обобщенных функций и методах функционального анализа.uk_UA
dc.description.abstractСформульовано змішану проекційно-сіткову схему розв’язку нелінійних крайових задач теорії малих пружно-пластичних деформацій. Досліджено коректність і збіжність змішаних апроксимацій для напружень, деформацій та переміщень. Детально вивчено властивості проектуючих операторів, на основі чого сформульовано умову, що забезпечує існування, єдиність і стійкість розв’язку дискретної задачі. Наведено результати аналізу використання числового інтегрування. Оцінки збіжності і точності базуються на теорії узагальнених функцій та методиках функціонального аналізу.uk_UA
dc.description.abstractA mixed projection-mesh scheme for the solution of nonlinear boundary problems of the theory of small elastic-plastic strains has been formulated. Correctness and convergence of the mixed approximations for stresses, strains, and displacements have been analyzed. The properties of projection operators are studied in detail, and on the basis of the results obtained, a condition has been formulated, which ensures the existence, uniqueness, and stability of the solution to a discrete problem. Application of the numerical integration has been analyzed and the obtained results are presented. The correctness and convergence estimates are based on the theory of generalized functions and the functional analysis method.uk_UA
dc.identifier.citationСмешанная проекционно-сеточная схема метода конечных элементов для решения краевых задач теории малых упругопластических деформаций / А.Ю. Чирков // Проблемы прочности. — 2004. — № 6. — С. 59-86. — Бібліогр.: 11 назв. — рос.uk_UA
dc.identifier.issn0556-171X
dc.identifier.udc539.3
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/47135
dc.language.isoruuk_UA
dc.publisherІнститут проблем міцності ім. Г.С. Писаренко НАН Україниuk_UA
dc.relation.ispartofПроблемы прочности
dc.statuspublished earlieruk_UA
dc.subjectНаучно-технический разделuk_UA
dc.titleСмешанная проекционно-сеточная схема метода конечных элементов для решения краевых задач теории малых упругопластических деформацийuk_UA
dc.title.alternativeMixed Projection-Mesh Scheme of the Finite-Element Method for the Solution of the Boundary-Value Problems of the Theory of Small Elastic-Plastic Strainsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
06-Chirkov.pdf
Розмір:
537.97 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: