Гиперболическая аппроксимация трансформации волн на течениях прибрежной зоны

dc.contributor.authorДемченко, Р.И.
dc.contributor.authorЖелезняк, М.И.
dc.date.accessioned2009-12-28T16:18:19Z
dc.date.available2009-12-28T16:18:19Z
dc.date.issued2002
dc.description.abstractС помощью метода Ito Y. и Tanimoto K. [7] Copeland'м было показано в [6], что уравнение "пологих склонов" может быть преобразовано в систему двух уравнений первого порядка гиперболического типа, что дает возможность значительно увеличить расчетную область и принять во внимание отраженную волну при моделировании распространения волн в зоне шельфа с портовыми сооружениями. Обобщение метода Ito Y. и Tanimoto K. для уравнения "пологих склонов" с учетом медленно изменяющихся течений, представленное в настоящей работе, приводит к более полной системе уравнений гиперболического типа, включающей систему уравнений [6]. В случае глубокой воды проведено сравнение численного решения полученной системы для высот гармонических волн, распространяющихся по течению и против течения, с аналитическим решением [9]. Кроме того, полученная система уравнений протестирована на экспериментах Thomas'а [16] для постоянной глубины и эксперименте Sakai [18] для переменной глубины. В двумерном случае показаны результаты численного моделирования распространения волн в заливе с впадающим в него устьем реки.uk_UA
dc.description.abstractЗа допомогою метода Ito Y. i Tanimoto K. [7] Copeland'м було показано в [6], що рiвняння "положистих схилiв" може бути перетворено на систему двох рiвнянь першого порядку гiперболичного типу, що дає можливiсть значно збiльшити область розрахунку i взяти до уваги вiдображену хвилю за умов моделювання портових споруд. Узагальнення метода Ito Y. i Tanimoto K. для рiвнянь "положистих схилiв" за наявностi повiльно змiнюваних течiй, шо наведено в цiй роботi, призводить до бiльш повної системи рiвнянь гiперболичного типу, яка мiстить систему рiнянь [6]. У випадку глибокої води проведено порiняння чисельного розв`язку одержаної системи для висот гармонiчних хвиль, що розповсюджуються за течiєю та проти течiї, з аналiтичним розв'язком [9]. Крiм того, отримана система рiвнянь тестована на експериментах Thomas'а [16] для однорiдної глибини та експериментi Sakai [18] для змiнної глибини. У двомiрному випадку наведенi результати чисельного моделювання розповсюдження хвиль у затоцi з гирлом рiчки, що впадає у затоку.uk_UA
dc.description.abstractIn [6] Copeland expressed by Ito Y. and Tanimoto K. method [7] the "mild -slope" equation in the form of a pair of first-order equations of a hyperbolic type. It resulted in the possibility to enlarge considerably the numerical domain and take into account the reflected wave for modeling wave transport in a shelf zone with sea harbour systems. Ito and Tanimoto method generalization presented in this paper for "mild-slope" equation with slowly variable currents results in more complete system of the hyperbolic type including the system [6]. The comparison of the wave heights in the case of the deep water has been performed for numerical results of the obtained system and analytical result [9] for waves propagating along currents and in opposite direction. The last system has been tested by Thomas experiment [16] for constant depth and by Sakai experiment [18] for ununiform depth. In addition the results of the numerical modeling have been shown for the waves propagating in a bay with river mouth flowing into this bay.uk_UA
dc.identifier.citationГиперболическая аппроксимация трансформации волн на течениях прибрежной зоны / Р.И. Демченко, М.И. Железняк // Прикладна гідромеханіка. — 2002. — Т. 4, № 2. — С. 23-29. — Бібліогр.: 19 назв. — рос.uk_UA
dc.identifier.issn1561-9087
dc.identifier.udc532.593
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/4908
dc.language.isoruuk_UA
dc.publisherІнститут гідромеханіки НАН Україниuk_UA
dc.statuspublished earlieruk_UA
dc.titleГиперболическая аппроксимация трансформации волн на течениях прибрежной зоныuk_UA
dc.title.alternativeHyperbolic approcsimation of waves transformation on the currents of shelf zoneuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
04-Demchenko.pdf
Розмір:
220.61 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
1.82 KB
Формат:
Item-specific license agreed upon to submission
Опис: