Two-Variable Wilson Polynomials and the Generic Superintegrable System on the 3-Sphere

dc.contributor.authorKalnins, E.G.
dc.contributor.authorMiller Jr., W.
dc.contributor.authorPost, S.
dc.date.accessioned2019-02-13T18:06:22Z
dc.date.available2019-02-13T18:06:22Z
dc.date.issued2011
dc.description.abstractWe show that the symmetry operators for the quantum superintegrable system on the 3-sphere with generic 4-parameter potential form a closed quadratic algebra with 6 linearly independent generators that closes at order 6 (as differential operators). Further there is an algebraic relation at order 8 expressing the fact that there are only 5 algebraically independent generators. We work out the details of modeling physically relevant irreducible representations of the quadratic algebra in terms of divided difference operators in two variables. We determine several ON bases for this model including spherical and cylindrical bases. These bases are expressed in terms of two variable Wilson and Racah polynomials with arbitrary parameters, as defined by Tratnik. The generators for the quadratic algebra are expressed in terms of recurrence operators for the one-variable Wilson polynomials. The quadratic algebra structure breaks the degeneracy of the space of these polynomials. In an earlier paper the authors found a similar characterization of one variable Wilson and Racah polynomials in terms of irreducible representations of the quadratic algebra for the quantum superintegrable system on the 2-sphere with generic 3-parameter potential. This indicates a general relationship between 2nd order superintegrable systems and discrete orthogonal polynomials.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue “Relationship of Orthogonal Polynomials and Special Functions with Quantum Groups and Integrable Systems”. The full collection is available at http://www.emis.de/journals/SIGMA/OPSF.html. Thanks to Jonathan Kress for valuable advice on computer verification of the dif ference operator realization for the structure formulas. S.P. acknowledges a postdoctoral IMS fellowship awarded by the Mathematical Physics Laboratory of the Centre de Recherches Math´ematiques.uk_UA
dc.identifier.citationTwo-Variable Wilson Polynomials and the Generic Superintegrable System on the 3-Sphere / E.G. Kalnins, W. Miller Jr., S. Post // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 46 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 81R12; 33C45
dc.identifier.otherDOI:10.3842/SIGMA.2011.051
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147168
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleTwo-Variable Wilson Polynomials and the Generic Superintegrable System on the 3-Sphereuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
051-Kalnins.pdf
Розмір:
467.84 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: