Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature

dc.contributor.authorRajaratnam, K.
dc.contributor.authorMcLenaghan, R.G.
dc.contributor.authorValero, C.
dc.date.accessioned2019-02-18T14:47:25Z
dc.date.available2019-02-18T14:47:25Z
dc.date.issued2016
dc.description.abstractWe review the theory of orthogonal separation of variables of the Hamilton-Jacobi equation on spaces of constant curvature, highlighting key contributions to the theory by Benenti. This theory revolves around a special type of conformal Killing tensor, hereafter called a concircular tensor. First, we show how to extend original results given by Benenti to intrinsically characterize all (orthogonal) separable coordinates in spaces of constant curvature using concircular tensors. This results in the construction of a special class of separable coordinates known as Kalnins-Eisenhart-Miller coordinates. Then we present the Benenti-Eisenhart-Kalnins-Miller separation algorithm, which uses concircular tensors to intrinsically search for Kalnins-Eisenhart-Miller coordinates which separate a given natural Hamilton-Jacobi equation. As a new application of the theory, we show how to obtain the separable coordinate systems in the two dimensional spaces of constant curvature, Minkowski and (Anti-)de Sitter space. We also apply the Benenti-Eisenhart-Kalnins-Miller separation algorithm to study the separability of the three dimensional Calogero-Moser and Morosi-Tondo systems.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue on Analytical Mechanics and Dif ferential Geometry in honour of Sergio Benenti. The full collection is available at http://www.emis.de/journals/SIGMA/Benenti.html. We would like to thank the referees for their helpful comments and suggestions. This work was supported in part by a QEII-Graduate Scholarship in Science and Technology (KR), Natural Sciences and Engineering Research Council of Canada Discovery Grant (RGM) and Undergraduate Student Research Award (CV).uk_UA
dc.identifier.citationOrthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature / K. Rajaratnam, R.G. McLenaghan, C. Valero // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 41 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 53C15; 70H20; 53A60
dc.identifier.otherDOI:10.3842/SIGMA.2016.117
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148531
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleOrthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvatureuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
117-Rajaratnam.pdf
Розмір:
994.01 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: