Рівномірне наближення функції сумою многочлена й експоненти з інтерполюванням

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України

Анотація

Встановлено достатні умови існування рівномірного (чебишовського, мінімаксного) наближення функції сумою полінома та експоненти з найменшою абсолютною похибкою й інтерполюванням у зовнішніх точках. Запропоновано алгоритм визначення параметрів такого рівномірного наближення за схемою Ремеза. Обґрунтовано застосування ітераційного методу для обчислення значення нелінійного параметра.
The sufficient conditions of existence of uniform (Chebyshev, minimax) function approximation by a sum of the polynomial and the exponential with least absolute error and with interpolation in external points are established. The algorithm of parameter determining of such approximation by Remez method is constructed. The application of the iterative method for calculation of nonlinear parameter value is substantiated.
Установлены достаточные условия существования равномерного (чебишевского, минимаксного) приближения функции суммой многочлена и экспоненты с наименьшей абсолютной погрешностью и интерполированием во внешних точках. Предложен алгоритм определения параметров такого равномерного приближения по схеме Ремеза. Обосновано применение итерационного метода для вычисления значения нелинейного параметра.

Опис

Теми

Цитування

Рівномірне наближення функції сумою многочлена й експоненти з інтерполюванням / П. Малачівський // Фіз.-мат. моделювання та інформ. технології. — 2007. — Вип. 6. — С. 77-90. — Бібліогр.: 10 назв. — укр.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced