Group of continuous transformations of real interval preserving tails of G₂-representation of numbers

dc.contributor.authorPratsiovytyi, M.V.
dc.contributor.authorLysenko, I.M.
dc.contributor.authorMaslova, Yu.P.
dc.date.accessioned2023-03-03T16:00:12Z
dc.date.available2023-03-03T16:00:12Z
dc.date.issued2020
dc.description.abstractIn the paper, we consider a two-symbol system of encoding for real numbers with two bases having different signs g₀ < 1 and g₁ = g₀ − 1. Transformations (bijections of the set to itself) of interval [0, g₀] preserving tails of this representation of numbers are studied. We prove constructively that the set of all continuous transformations from this class with respect to composition of functions forms an infinite non-abelian group such that increasing transformations form its proper subgroup. This group is a proper subgroup of the group of transformations preserving frequencies of digits of representations of numbers.uk_UA
dc.identifier.citationGroup of continuous transformations of real interval preserving tails of G₂-representation of numbers / M.V. Pratsiovytyi, I.M. Lysenko, Yu.P. Maslova // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 99–108. — Бібліогр.: 10 назв. — англ.uk_UA
dc.identifier.issn1726-3255
dc.identifier.otherDOI:10.12958/adm1498
dc.identifier.other2010 MSC: 11H71, 26A46, 93B17
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/188505
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titleGroup of continuous transformations of real interval preserving tails of G₂-representation of numbersuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
09-Pratsiovytyi.pdf
Розмір:
349.11 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: