Compact Riemannian Manifolds with Homogeneous Geodesics
| dc.contributor.author | Alekseevsky, D.V. | |
| dc.contributor.author | Nikonorov, Y.G. | |
| dc.date.accessioned | 2019-02-19T17:31:47Z | |
| dc.date.available | 2019-02-19T17:31:47Z | |
| dc.date.issued | 2009 | |
| dc.description.abstract | A homogeneous Riemannian space (M = G/H,g) is called a geodesic orbit space (shortly, GO-space) if any geodesic is an orbit of one-parameter subgroup of the isometry group G. We study the structure of compact GO-spaces and give some sufficient conditions for existence and non-existence of an invariant metric g with homogeneous geodesics on a homogeneous space of a compact Lie group G. We give a classification of compact simply connected GO-spaces (M = G/H,g) of positive Euler characteristic. If the group G is simple and the metric g does not come from a bi-invariant metric of G, then M is one of the flag manifolds M₁ = SO(2n+1)/U(n) or M₂ = Sp(n)/U(1)·Sp(n–1) and g is any invariant metric on M which depends on two real parameters. In both cases, there exists unique (up to a scaling) symmetric metric g₀ such that (M,g0) is the symmetric space M = SO(2n+2)/U(n+1) or, respectively, CP²n⁻¹. The manifolds M₁, M₂ are weakly symmetric spaces. | uk_UA |
| dc.description.sponsorship | This paper is a contribution to the Special Issue “Elie Cartan and Differential Geometry”. The first author was partially supported by the Royal Society (Travel Grant 2007/R3). The second author was partially supported by the State Maintenance Program for the Leading Scientific Schools of the Russian Federation (grant NSH-5682.2008.1). We are grateful to all referees, whose comments and suggestions permit us to improve the presentation of this article. | uk_UA |
| dc.identifier.citation | Compact Riemannian Manifolds with Homogeneous Geodesics / D.V. Alekseevsky, Y.G. Nikonorov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 28 назв. — англ. | uk_UA |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2000 Mathematics Subject Classification: 53C20; 53C25; 53C35 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/149121 | |
| dc.language.iso | en | uk_UA |
| dc.publisher | Інститут математики НАН України | uk_UA |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | uk_UA |
| dc.title | Compact Riemannian Manifolds with Homogeneous Geodesics | uk_UA |
| dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 93-Alekseevsky.pdf
- Розмір:
- 290.35 KB
- Формат:
- Adobe Portable Document Format
- Опис:
- Стаття
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: