A Sharp Lieb-Thirring Inequality for Functional Difference Operators
| dc.contributor.author | Laptev, Ari | |
| dc.contributor.author | Schimmer, Lukas | |
| dc.date.accessioned | 2026-01-02T08:29:34Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract | We prove sharp Lieb-Thirring type inequalities for the eigenvalues of a class of one-dimensional functional difference operators associated with mirror curves. We furthermore prove that the bottom of the essential spectrum of these operators is a resonance state. | |
| dc.description.sponsorship | A. Laptev was partially supported by an RSF grant 18-11-0032. L. Schimmer was supported by a VR grant 2017-04736 at the Royal Swedish Academy of Sciences. The authors would like to thank the anonymous referees for their useful comments to improve the article. | |
| dc.identifier.citation | A Sharp Lieb-Thirring Inequality for Functional Difference Operators. Ari Laptev and Lukas Schimmer. SIGMA 17 (2021), 105, 10 pages | |
| dc.identifier.doi | https://doi.org/10.3842/SIGMA.2021.105 | |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2020 Mathematics Subject Classification: 47A75; 81Q10 | |
| dc.identifier.other | arXiv:2109.05465 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/211422 | |
| dc.language.iso | en | |
| dc.publisher | Інститут математики НАН України | |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | |
| dc.title | A Sharp Lieb-Thirring Inequality for Functional Difference Operators | |
| dc.type | Article |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 105-Laptev.pdf
- Розмір:
- 349.83 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: