A Sharp Lieb-Thirring Inequality for Functional Difference Operators

dc.contributor.authorLaptev, Ari
dc.contributor.authorSchimmer, Lukas
dc.date.accessioned2026-01-02T08:29:34Z
dc.date.issued2021
dc.description.abstractWe prove sharp Lieb-Thirring type inequalities for the eigenvalues of a class of one-dimensional functional difference operators associated with mirror curves. We furthermore prove that the bottom of the essential spectrum of these operators is a resonance state.
dc.description.sponsorshipA. Laptev was partially supported by an RSF grant 18-11-0032. L. Schimmer was supported by a VR grant 2017-04736 at the Royal Swedish Academy of Sciences. The authors would like to thank the anonymous referees for their useful comments to improve the article.
dc.identifier.citationA Sharp Lieb-Thirring Inequality for Functional Difference Operators. Ari Laptev and Lukas Schimmer. SIGMA 17 (2021), 105, 10 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2021.105
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 47A75; 81Q10
dc.identifier.otherarXiv:2109.05465
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211422
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleA Sharp Lieb-Thirring Inequality for Functional Difference Operators
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
105-Laptev.pdf
Розмір:
349.83 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: