Long-Time Asymptotics for the Defocusing Integrable Discrete Nonlinear Schrödinger Equation II

dc.contributor.authorYamane, H.
dc.date.accessioned2019-02-12T18:09:40Z
dc.date.available2019-02-12T18:09:40Z
dc.date.issued2015
dc.description.abstractWe investigate the long-time asymptotics for the defocusing integrable discrete nonlinear Schrödinger equation. If |n| < 2t, we have decaying oscillation of order O(t⁻¹/²) as was proved in our previous paper. Near |n|=2t, the behavior is decaying oscillation of order O(t⁻¹/³) and the coefficient of the leading term is expressed by the Painlevé II function. In |n| > 2t, the solution decays more rapidly than any negative power of n.uk_UA
dc.description.sponsorshipThis work was partially supported by JSPS KAKENHI Grant Number 26400127. Parts of this work were done during the author’s stay at Wuhan University. He wishes to thank Xiaofang Zhou for helpful comments and hospitality.uk_UA
dc.identifier.citationLong-Time Asymptotics for the Defocusing Integrable Discrete Nonlinear Schrödinger Equation II / H. Yamane // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 6 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 35Q55; 35Q15
dc.identifier.otherDOI:10.3842/SIGMA.2015.020
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/146996
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleLong-Time Asymptotics for the Defocusing Integrable Discrete Nonlinear Schrödinger Equation IIuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
020-Yamane.pdf
Розмір:
635.51 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: