Sobolev Lifting over Invariants
| dc.contributor.author | Parusiński, Adam | |
| dc.contributor.author | Rainer, Armin | |
| dc.date.accessioned | 2025-12-29T11:08:59Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract | We prove lifting theorems for complex representations 𝑉 of finite groups 𝐺. Let σ = (σ₁,…, σₙ) be a minimal system of homogeneous basic invariants and let 𝑑 be their maximal degree. We prove that any continuous map 𝑓 ̅ : ℝᵐ → 𝑉 such that 𝑓 = σ ∘ 𝑓 ̅ is of class 𝐶ᵈ⁻¹'¹ is locally of Sobolev class 𝑊¹'ᵖ for all 1 ≤ 𝑝 < 𝑑/(𝑑−1). In the case 𝑚 = 1, there always exists a continuous choice 𝑓 ̅ for given f: ℝ →σ(𝑉) ⊆ ℂⁿ. We give uniform bounds for the 𝑊¹'ᵖ-norm of 𝑓 ̅ in terms of the 𝐶ᵈ⁻¹'¹-norm of 𝑓. The result is optimal: in general, a lifting 𝑓 ̅ cannot have a higher Sobolev regularity, and it even might not have bounded variation if 𝑓 is in a larger Hölder class. | |
| dc.description.sponsorship | Supported by the Austrian Science Fund (FWF), Grant P 32905-N and START Programme Y963, and by ANR project ANR-17-CE40-0023- LISA. | |
| dc.identifier.citation | Sobolev Lifting over Invariants. Adam Parusiński and Armin Rainer. SIGMA 17 (2021), 037, 31 pages | |
| dc.identifier.doi | https://doi.org/10.3842/SIGMA.2021.037 | |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2020 Mathematics Subject Classification: 22E45;26A16;46E35;14L24 | |
| dc.identifier.other | arXiv:2003.01967 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/211312 | |
| dc.language.iso | en | |
| dc.publisher | Інститут математики НАН України | |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | |
| dc.title | Sobolev Lifting over Invariants | |
| dc.type | Article |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 037-Parusiński.pdf
- Розмір:
- 596.45 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: