Sobolev Lifting over Invariants

dc.contributor.authorParusiński, Adam
dc.contributor.authorRainer, Armin
dc.date.accessioned2025-12-29T11:08:59Z
dc.date.issued2021
dc.description.abstractWe prove lifting theorems for complex representations 𝑉 of finite groups 𝐺. Let σ = (σ₁,…, σₙ) be a minimal system of homogeneous basic invariants and let 𝑑 be their maximal degree. We prove that any continuous map 𝑓 ̅ : ℝᵐ → 𝑉 such that 𝑓 = σ ∘ 𝑓 ̅ is of class 𝐶ᵈ⁻¹'¹ is locally of Sobolev class 𝑊¹'ᵖ for all 1 ≤ 𝑝 < 𝑑/(𝑑−1). In the case 𝑚 = 1, there always exists a continuous choice 𝑓 ̅ for given f: ℝ →σ(𝑉) ⊆ ℂⁿ. We give uniform bounds for the 𝑊¹'ᵖ-norm of 𝑓 ̅ in terms of the 𝐶ᵈ⁻¹'¹-norm of 𝑓. The result is optimal: in general, a lifting 𝑓 ̅ cannot have a higher Sobolev regularity, and it even might not have bounded variation if 𝑓 is in a larger Hölder class.
dc.description.sponsorshipSupported by the Austrian Science Fund (FWF), Grant P 32905-N and START Programme Y963, and by ANR project ANR-17-CE40-0023- LISA.
dc.identifier.citationSobolev Lifting over Invariants. Adam Parusiński and Armin Rainer. SIGMA 17 (2021), 037, 31 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2021.037
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 22E45;26A16;46E35;14L24
dc.identifier.otherarXiv:2003.01967
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211312
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleSobolev Lifting over Invariants
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
037-Parusiński.pdf
Розмір:
596.45 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: