Nonuniqueness of semidirect decompositions for semidirect products with directly decomposable factors and applications for dihedral groups

dc.contributor.authorDaugulis, P.
dc.date.accessioned2019-06-17T19:00:16Z
dc.date.available2019-06-17T19:00:16Z
dc.date.issued2017
dc.description.abstractNonuniqueness of semidirect decompositions of groups is an insufficiently studied question in contrast to direct decompositions. We obtain some results about semidirect decompositions for semidirect products with factors which are nontrivial direct products. We deal with a special case of semidirect product when the twisting homomorphism acts diagonally on a direct product, as well as with the case when the extending group is a direct product. We give applications of these results in the case of generalized dihedral groups and classic dihedral groups D2n. For D2n we give a complete description of semidirect decompositions and values of minimal permutation degrees.uk_UA
dc.identifier.citationNonuniqueness of semidirect decompositions for semidirect products with directly decomposable factors and applications for dihedral groups / P. Daugulis // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 204-215. — Бібліогр.: 6 назв. — англ.uk_UA
dc.identifier.issn1726-3255
dc.identifier.other2010 MSC:20E22, 20D40.
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/156025
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titleNonuniqueness of semidirect decompositions for semidirect products with directly decomposable factors and applications for dihedral groupsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
03-Daugulis.pdf
Розмір:
331.56 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: