Нечеткая кластеризация в задаче построение моделей «Состав – свойство» по данным пассивного эксперимента в условиях неопределённости

dc.contributor.authorДёмин, Д.А.
dc.date.accessioned2015-04-28T18:45:55Z
dc.date.available2015-04-28T18:45:55Z
dc.date.issued2013
dc.description.abstractАктуальность исследования, результаты которого приводятся в статье, связана с разработкой методов оценивания параметров математических моделей в том случае, если они строятся по результатам пассивного эксперимента в условиях малой выборки нечетких данных. Первым этапом на этом пути является разработка процедуры нечеткой кластеризации, позволяющей «разнести» все экспериментальные точки в многомерном факторном пространстве, «приписав» их к той или иной вершине гиперкуба, формирующего план полного факторного эксперимента для реализации последующей процедуры ортогонализации. Математическая модель процесса представляет собой регрессионное уравнение в виде полинома Колмогорова-Габора, описывающее влияние нечётких входных переменных – состава сплава – на его свойства. Это так называемая модель типа «состав – свойство». В результате реализации предложенной процедуры нечёткой кластеризации, обязательной перед построением уравнения регрессии в случае, если область планирования имеет произвольную форму, может быть установлен кластер, «ближайший» по отношению к рассматриваемой экспериментальной точке и осуществлена процедура отнесения соответствующей точки к тому или иному центру кластеризации. Полученные при этом результаты могут быть использованы для дальнейшей процедуры построения уравнения регрессии. Предложен алгоритм нечеткой кластеризации и приведены примеры расчета функций принадлежности, используемых при реализации этого алгоритма. Использование предлагаемой процедуры является эффективным при оценке параметров математических моделей по данным пассивного эксперимента в условиях малой выборки нечетких данных.uk_UA
dc.description.abstractОписані результати досліджень, присвячених розробці процедури нечіткої кластеризації експериментальних точок при побудові математичних моделей типу «склад – властивості» за даними пасивного експерименту. Запропоновано алгоритм нечіткої кластеризації та наведені приклади розрахунку функцій належності, що використовуються при реалізації цього алгоритму. Використання процедури, що пропонується, може бути здійснено при оцінюванні параметрів математичних моделей за даними пасивного експерименту в умовах малої вибірки нечітких даних.uk_UA
dc.description.abstractRelevance of research, results of which are given in the paper concerns the development of methods for estimating the parameters of mathematical models in case they are built on the passive experiment results in conditions of small sample of fuzzy data. The first stage in this process is to develop a fuzzy clustering procedure, which allows to "spread" all experimental points in a multidimensional factor space, having "attributed" them to this or that hypercube top, forming a plan of full factorial experiment to implement the further orthogonalization procedure. The mathematical model of the process is the regression equation in the form of the Kolmogorov-Gabor polynomial, describing the influence of fuzzy input variables, i.e. alloy structure, on its properties. It is so-called "structure - property" model. As a result of realization of the proposed fuzzy clustering procedure, obligatory before building up the regression equation in case the planning area has an arbitrary shape, cluster, "nearest" to the considered experimental point can be installed and procedure of referring the corresponding point to this or that clustering center can be carried out. The results obtained can be used for the further construction procedure of the regression equation. The fuzzy clustering algorithm was proposed, and calculation examples of membership functions, used in the implementation of this algorithm were given. Using the proposed procedure is effective in estimating the parameters of mathematical models according to the passive experiment data in conditions of small sample of fuzzy data.uk_UA
dc.identifier.citationНечеткая кластеризация в задаче построение моделей «Состав – свойство» по данным пассивного эксперимента в условиях неопределённости / Д.А. Дёмин // Проблемы машиностроения. — 2013. — Т. 16, № 6. — С. 15-23. — Бібліогр.: 23 назв. — рос.uk_UA
dc.identifier.issn0131-2928
dc.identifier.udc681.5:519.24
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/80953
dc.language.isoruuk_UA
dc.publisherІнстиут проблем машинобудування ім. А.М. Підгорного НАН Україниuk_UA
dc.relation.ispartofПроблемы машиностроения
dc.statuspublished earlieruk_UA
dc.subjectПрикладная математикаuk_UA
dc.titleНечеткая кластеризация в задаче построение моделей «Состав – свойство» по данным пассивного эксперимента в условиях неопределённостиuk_UA
dc.title.alternativeMathematical modeling in the problem of selecting optimal control of obtaining alloys for machine parts in uncertainty conditionsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
03-Demin.pdf
Розмір:
992.77 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: