О структуре полиномиальных инвариантов линейных циклов

dc.contributor.authorЛьвов, M.C.
dc.date.accessioned2017-10-05T20:15:36Z
dc.date.available2017-10-05T20:15:36Z
dc.date.issued2015
dc.description.abstractРассмотрена задача генерации полиномиальных инвариантов итерационных циклов с оператором инициализации цикла и невырожденным линейным оператором в теле цикла. Множество таких инвариантов образует идеал кольца полиномов от переменных цикла. Приведен алгоритм вычисления базисных инвариантов для линейного оператора типа жордановой клетки, а также алгоритм вычисления базисных инвариантов диагонализируемого линейного оператора с неприводимым минимальным характеристическим полиномом. Доказана теорема о строении базиса идеала инвариантов: он состоит из базисных инвариантов жордановых клеток и базисных инвариантов диагонализируемой части рассматриваемого линейного оператора.uk_UA
dc.description.abstractРозглянуто задачу генерації поліноміальних інваріантів ітераційних циклів з оператором ініціалізації циклу та невиродженим лінійним оператором у тілі циклу. Множина таких інваріантів утворює ідеал кільця поліномів від змінних циклу. Наведено алгоритм обчислення базисних інваріантів для лінійного оператора типу жорданової клітини, а також алгоритм обчислення базисних інваріантів діагоналізовного лінійного оператора з незвідним мінімальним характеристичним поліномом. Доведено теорему про структуру базису ідеалу інваріантів: він складається з базисних інваріантів жорданових клітин і базисних інваріантів діагоналізовної частини лінійного оператораuk_UA
dc.description.abstractThe problem of polynomial invariants generation for iterative loops with loop initial statement and nonsingular linear operator in the loop body is considered. The set of such invariants forms the ideal in polynomial ring in the loop variables. An algorithm to calculate basic invariants for a Jordanian cell linear operator and for the diagonalized linear operator with irreducible minimal characteristic polynomial are presented. The theorem about the structure of the basis of invariants ideal is proved: it consists of basic invariants of Jordanian cells and basis invariants of the diagonalized part for the linear operator under consideration.uk_UA
dc.identifier.citationО структуре полиномиальных инвариантов линейных циклов / M.C. Львов // Кибернетика и системный анализ. — 2015. — Т. 51, № 3. — С. 143-156. — Бібліогр.: 20 назв. — рос.uk_UA
dc.identifier.issn0023-1274
dc.identifier.udc004.421.6
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/124827
dc.language.isoruuk_UA
dc.publisherІнститут кібернетики ім. В.М. Глушкова НАН Україниuk_UA
dc.relation.ispartofКибернетика и системный анализ
dc.statuspublished earlieruk_UA
dc.subjectПрограммно-технические комплексыuk_UA
dc.titleО структуре полиномиальных инвариантов линейных цикловuk_UA
dc.title.alternativeПро структуру поліноміальних інваріантів лінійних циклівuk_UA
dc.title.alternativeThe structure of polynomial invariants of linear loopsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
12-Lvov.pdf
Розмір:
157.66 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: