Projective method for the equation of risk theory in the arithmetic case

dc.contributor.authorChernecky, V.A.
dc.date.accessioned2020-02-13T09:19:01Z
dc.date.available2020-02-13T09:19:01Z
dc.date.issued2013
dc.description.abstractWe consider a discrete model of operation of an insurance company whose initial capital can take any integer value. In this statement, the problem of nonruin probability is naturally solved by the Wiener – Hopf method. Passing to generating functions and reducing the fundamental equation of risk theory to a Riemann boundary-value problem on the unit circle, we establish that this equation is a special one-sided discrete Wiener – Hopf equation whose symbol has a unique zero, and, furthermore, this zero is simple. On the basis of the constructed solvability theory for this equation, we justify the applicability of the projective method to the approximation of ruin probabilities in the spaces l₁⁺ and c₀⁺ . Conditions for the distributions of waiting times and claims under which the method converges are established. The delayed renewal process and stationary renewal process are considered, and approximations for the ruin probabilities in these processes are obtaineduk_UA
dc.description.abstractРозглядається дискретна модель функцiонування страхової компанiї, початковий капiтал якої може набувати довiльного цiлого значення. У такiй постановцi проблема обчислення ймовiрностi стiйкостi компанiї природно розв’язується методом Вiнера – Хопфа. При переходi до твiрних функцiй i зведеннi фундаментального рiвняння теорiї ризику до граничної задачi Рiмана на одиничному колi з’ясовано, що розглядуване рiвняння є особливим одностороннiм дискретним рiвнянням Вiнера – Хопфа, символ якого має єдиний нуль i цей нуль є простим. На базi побудованої теорiї розв’язностi цього рiвняння обґрунтовано застосування проективного методу до апроксимацiї ймовiрностей банкрутства у просторах l₁⁺ і c₀⁺. Отримано умови на розподiли часiв очiкування вимог i розмiрiв виплат для збiжностi методу. Розглянуто процес вiдновлення iз запiзненням i стацiонарний процес вiдновлення, а також наближення для ймовiрностей банкрутства у цих процесахuk_UA
dc.identifier.citationProjective method for the equation of risk theory in the arithmetic case / V.A. Chernecky // Український математичний журнал. — 2013. — Т. 65, № 4. — С. 565-582. — Бібліогр.: 17 назв. — англ.uk_UA
dc.identifier.issn1027-3190
dc.identifier.udc368.01; 517.44; 519.6
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/165330
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofУкраїнський математичний журнал
dc.statuspublished earlieruk_UA
dc.subjectСтаттіuk_UA
dc.titleProjective method for the equation of risk theory in the arithmetic caseuk_UA
dc.title.alternativeПроективний метод для рiвняння теорiї ризику в арифметичному випадкуuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
10-Chernecky.pdf
Розмір:
346.38 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: