Об эквивалентности вероятностных мер, порожденных решениями нелинейных эволюционных дифференциальных уравнений в гильбертовом пространстве, возмущенных гауссовскими процессами. II

dc.contributor.authorФомин-Шаташвили, А.А.
dc.contributor.authorФомина, Т.А.
dc.contributor.authorШаташвили, А.Д.
dc.date.accessioned2015-07-02T08:05:40Z
dc.date.available2015-07-02T08:05:40Z
dc.date.issued2012
dc.description.abstractПродовжено дослідження еквівалентності мір, породжених розв’язками нелінійних еволюційних диференціальних рівнянь з необмеженими лінійними операторами, збурених випадковими гаусівськими процесами в гільбертовому просторі, зокрема Н. В просторі Н розглянуто два різних нелінійних еволюційних диференціальних рівняння, але збурених в правій частині одним і тим же випадковим процесом Гауса. Встановлюються достатні умови для існування і єдиності розв’язку цих рівнянь, еквівалентність заходів, породжених розв’язками цих рівнянь, а також в явному вигляді записуються формули щільності Радона–Никодима відповідних мір, обчислених в термінах коефіцієнтів даних рівняньuk_UA
dc.description.abstractThe paper continues the studies started by the authors in the equivalence of the measures generated by the solutions of nonlinear evolution differential equations with unbounded linear operators perturbed by random Gaussian processes in a Hilbert space, in particular Н. Two different nonlinear evolution differential equations perturbed by the same random Gaussian process in the right-hand side are considered in the space Н. The sufficient existence and uniqueness conditions are established for the solutions of these equations, the equivalence of the measures generated by the solutions is proved, and explicit formulas of the Radon–Nikodym density of the respective measures calculated in terms of the coefficients of the considered equations are written.uk_UA
dc.identifier.citationОб эквивалентности вероятностных мер, порожденных решениями нелинейных эволюционных дифференциальных уравнений в гильбертовом пространстве, возмущенных гауссовскими процессами. II / А.А. Фомин-Шаташвили, Т.А. Фомина, А.Д. Шаташвили // Кибернетика и системный анализ. — 2012. — Т. 48, № 1. — С. 49-61. — Бібліогр.: 10 назв. — рос.uk_UA
dc.identifier.issn0023-1274
dc.identifier.udc519.21
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/84016
dc.language.isoruuk_UA
dc.publisherІнститут кібернетики ім. В.М. Глушкова НАН Україниuk_UA
dc.relation.ispartofКибернетика и системный анализ
dc.statuspublished earlieruk_UA
dc.subjectСистемный анализuk_UA
dc.titleОб эквивалентности вероятностных мер, порожденных решениями нелинейных эволюционных дифференциальных уравнений в гильбертовом пространстве, возмущенных гауссовскими процессами. IIuk_UA
dc.title.alternativeПро еквівалентність ймовірнісних мір, породжених розв’язками нелінійних еволюційних диференціальних рівнянь у гільбертовому просторі, збурених гаусівськими процесами. IIuk_UA
dc.title.alternativeEquivalence of the probability measures generated by the solutions of nonlinear evolution differential equalizations in a Hilbert space, disturbed by Gaussian processes. IIuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
06-Fomin.pdf
Розмір:
141.9 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: