Bôcher and Abstract Contractions of 2nd Order Quadratic Algebras

dc.contributor.authorEscobar Ruiz, M.A.
dc.contributor.authorKalnins, E.G.
dc.contributor.authorMiller Jr., W.
dc.contributor.authorSubag, E.
dc.date.accessioned2019-02-18T16:42:19Z
dc.date.available2019-02-18T16:42:19Z
dc.date.issued2017
dc.description.abstractQuadratic algebras are generalizations of Lie algebras which include the symmetry algebras of 2nd order superintegrable systems in 2 dimensions as special cases. The superintegrable systems are exactly solvable physical systems in classical and quantum mechanics. Distinct superintegrable systems and their quadratic algebras can be related by geometric contractions, induced by Bôcher contractions of the conformal Lie algebra so(4,C) to itself. In this paper we give a precise definition of Bôcher contractions and show how they can be classified. They subsume well known contractions of e(2,C) and so(3,C) and have important physical and geometric meanings, such as the derivation of the Askey scheme for obtaining all hypergeometric orthogonal polynomials as limits of Racah/Wilson polynomials. We also classify abstract nondegenerate quadratic algebras in terms of an invariant that we call a canonical form. We describe an algorithm for finding the canonical form of such algebras. We calculate explicitly all canonical forms arising from quadratic algebras of 2D nondegenerate superintegrable systems on constant curvature spaces and Darboux spaces. We further discuss contraction of quadratic algebras, focusing on those coming from superintegrable systems.uk_UA
dc.description.sponsorshipThis work was partially supported by a grant from the Simons Foundation (# 208754 to Willard Miller Jr. and by CONACYT grant (# 250881 to M.A. Escobar-Ruiz). The author M.A. Escobar-Ruiz is grateful to ICN UNAM for the kind hospitality during his visit, where a part of the research was done, he was supported in part by DGAPA grant IN108815 (Mexico).uk_UA
dc.identifier.citationBôcher and Abstract Contractions of 2nd Order Quadratic Algebras / M.A. Escobar Ruiz, E.G. Kalnins, W. Miller Jr., E. Suba // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 37 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 22E70; 16G99; 37J35; 37K10; 33C45; 17B60; 81R05; 33C45
dc.identifier.otherDOI:10.3842/SIGMA.2017.013
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148617
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleBôcher and Abstract Contractions of 2nd Order Quadratic Algebrasuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
013-Escobar Ruiz.pdf
Розмір:
642.86 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: