Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors
dc.contributor.author | Kuplevakhsky, S.V. | |
dc.date.accessioned | 2017-06-10T06:56:47Z | |
dc.date.available | 2017-06-10T06:56:47Z | |
dc.date.issued | 2004 | |
dc.description.abstract | We present a complete, exact solution of the problem of the magnetic properties of layered superconductors with an infinite number of superconducting layers in parallel fields H 0. Based on a new exact variational method, we determine the type of all stationary points of both the Gibbs and Helmholtz free-energy functionals. For the Gibbs free-energy functional, they are either points of strict, strong minima or saddle points. All stationary points of the Helmholtz free-energy functional are those of strict, strong minima. The only minimizes of both the functionals are the Meissner (0-soliton) solution and soliton solutions. The latter represent equilibrium Josephson vortices. In contrast, non-soliton configurations (interpreted in some previous publications as «isolated fluxons» and «fluxon lattices») are shown to be saddle points of the Gibbs free-energy functional: They violate the conservation law for the flux and the stationarity condition for the Helmholtz free-energy functional. For stable solutions, we give a topological classification and establish a one-to-one correspondence with Abrikosov vortices in type-II superconductors. In the limit of weak interlayer coupling, exact, closed-form expressions for all stable solutions are derived: They are nothing but the «vacuum state» and topological solitons of the coupled static sine-Gordon equations for the phase differences. The stable solutions cover the whole field range 0 < H < ∞ and their stability regions overlap. Soliton solutions exist for arbitrary small transverse dimensions of the system, provided the field H to be sufficiently high. Aside from their importance for weak superconductivity, the new soliton solutions can find applications in different fields of nonlinear physics and applied mathematics. | uk_UA |
dc.identifier.citation | Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors / S.V. Kuplevakhsky // Физика низких температур. — 2004. — Т. 30, № 7-8. — С. 856-873. — Бібліогр.: 32 назв. — англ. | uk_UA |
dc.identifier.issn | 0132-6414 | |
dc.identifier.other | PACS: 74.50.+r, 74.80.Dm, 05.45.Yv | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/119840 | |
dc.language.iso | en | uk_UA |
dc.publisher | Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України | uk_UA |
dc.relation.haspart | Физика низких температур | |
dc.status | published earlier | uk_UA |
dc.subject | Сверхпроводимость и мезоскопические структуры | uk_UA |
dc.title | Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 15-Kuplevakhsky.pdf
- Розмір:
- 194.05 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: