Walls for 𝐺-Hilb via Reids Recipe

dc.contributor.authorWormleighton, Ben
dc.date.accessioned2025-12-22T09:28:46Z
dc.date.issued2020
dc.description.abstractThe three-dimensional McKay correspondence seeks to relate the geometry of crepant resolutions of Gorenstein 3-fold quotient singularities 𝔸³/𝐺 with the representation theory of the group 𝐺. The first crepant resolution studied in depth was the 𝐺-Hilbert scheme 𝐺-HilbA3, which is also a moduli space of θ-stable representations of the McKay quiver associated to 𝐺. As the stability parameter θ varies, we obtain many other crepant resolutions. In this paper, we focus on the case where 𝐺 is abelian, and compute explicit inequalities for the chamber of the stability space defining 𝐺-Hilb𝔸³ in terms of a marking of exceptional subvarieties of 𝐺-Hilb𝔸³ called Reid's recipe. We further show which of these inequalities define walls. This procedure depends only on the combinatorics of the exceptional fibre and has applications to the birational geometry of other crepant resolutions.
dc.description.sponsorshipThe author would like to thank Yukari Ito and Nagoya University for hosting him as this research began. He would also like to thank Alastair Craw, Alvaro Nolla de Celis, and David Nadler for many fruitful and enjoyable conversations about this project, as well as the referees for their thoughtful suggestions on how to improve its exposition.
dc.identifier.citationWalls for 𝐺-Hilb via Reids Recipe. Ben Wormleighton. SIGMA 16 (2020), 106, 38 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2020.106
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 14E16; 14M25; 16G20
dc.identifier.otherarXiv:1908.05748
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211014
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleWalls for 𝐺-Hilb via Reids Recipe
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
106-Wormleighton.pdf
Розмір:
722.67 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: