Twisted Traces and Positive Forms on Quantized Kleinian Singularities of Type A

dc.contributor.authorEtingof, Pavel
dc.contributor.authorKlyuev, Daniil
dc.contributor.authorRains, Eric
dc.contributor.authorStryker, Douglas
dc.date.accessioned2025-12-29T11:10:43Z
dc.date.issued2021
dc.description.abstractFollowing [Beem C., Peelaers W., Rastelli L., Comm. Math. Phys. 354 (2017), 345-392] and [Etingof P., Stryker D., SIGMA 16 (2020), 014, 28 pages], we undertake a detailed study of twisted traces on quantizations of Kleinian singularities of type 𝐴ₙ₋₁. In particular, we give explicit integral formulas for these traces and use them to determine when a trace defines a positive Hermitian form on the corresponding algebra. This leads to a classification of unitary short star-products for such quantizations, a problem posed by Beem, Peelaers, and Rastelli in connection with 3-dimensional superconformal field theory. In particular, we confirm their conjecture that for 𝑛 ≤ 4 a unitary short star-product is unique and compute its parameter as a function of the quantization parameters, giving exact formulas for the numerical functions by Beem, Peelaers, and Rastelli. If 𝑛 = 2, this, in particular, recovers the theory of unitary spherical Harish-Chandra bimodules for 𝔰𝔩₂. Thus, the results of this paper may be viewed as a starting point for a generalization of the theory of unitary Harish-Chandra bimodules over enveloping algebras of reductive Lie algebras [Vogan Jr. D.A., Annals of Mathematics Studies, Vol. 118, Princeton University Press, Princeton, NJ, 1987] to more general quantum algebras. Finally, we derive recurrences to compute the coefficients of short star-products corresponding to twisted traces, which are generalizations of discrete Painlevé systems.
dc.description.sponsorshipThe work of P.E. was partially supported by the NSF grant DMS-1502244. P.E. is grateful to Anton Kapustin for introducing him to the topic of this paper, and to Chris Beem, Mykola Dedushenko, and Leonardo Rastelli for useful discussions. E.R. would like to thank Nicholas Witte for pointing out the reference [12].
dc.identifier.citationTwisted Traces and Positive Forms on Quantized Kleinian Singularities of Type A. Pavel Etingof, Daniil Klyuev, Eric Rains and Douglas Stryker. SIGMA 17 (2021), 029, 31 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2021.029
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 16W70; 33C47
dc.identifier.otherarXiv:2009.09437
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211320
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleTwisted Traces and Positive Forms on Quantized Kleinian Singularities of Type A
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
029-Etingof.pdf
Розмір:
524.19 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: