Densities, submeasures and partitions of groups

dc.contributor.authorBanakh, T.
dc.contributor.authorProtasov, I.
dc.contributor.authorSlobodianiuk, S.
dc.date.accessioned2019-06-14T03:21:10Z
dc.date.available2019-06-14T03:21:10Z
dc.date.issued2014
dc.description.abstractIn 1995 in Kourovka notebook the second author asked the following problem: is it true that for each partition G=A₁ ∪ ⋯ ∪ An of a group G there is a cell Ai of the partition such that G = FAiA⁻¹i for some set F ⊂ G of cardinality |F |≤ n? In this paper we survey several partial solutions of this problem, in particular those involving certain canonical invariant densities and submeasures on groups. In particular, we show that for any partition G = A₁ ∪ ⋯ ∪ An of a group G there are cells Ai, Aj of the partition such that G = FAjA⁻¹j for some finite set F ⊂ G of cardinality |F| ≤ max₀<k≤n ∑ⁿ⁻kp₌₀kp ≤ n!; G = F ⋅ ⋃x∈ExAiA⁻¹ix⁻¹ for some finite sets F, E ⊂ G with |F| ≤ n; G = FAiA⁻¹iAi for some finite set F ⊂ G of cardinality |F| ≤ n; the set (AiA⁻¹i)⁴ⁿ⁻¹ is a subgroup of index ≤ n in G. The last three statements are derived from the corresponding density results.uk_UA
dc.identifier.citationDensities, submeasures and partitions of groups / T. Banakh, I. Protasov, S. Slobodianiuk // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 2. — С. 193–221. — Бібліогр.: 25 назв. — англ.uk_UA
dc.identifier.issn1726-3255
dc.identifier.other2010 MSC:05E15, 05D10, 28C10.
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/153328
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titleDensities, submeasures and partitions of groupsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
02-Banakh.pdf
Розмір:
296.77 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: