Comparative Analysis of the Application of Multilayer and Convolutional Neural Networks for Recognition of Handwritten Letters of the Azerbaijani Alphabet

dc.contributor.authorMustafayev, E.
dc.contributor.authorAzimov, R.
dc.date.accessioned2021-11-12T15:21:40Z
dc.date.available2021-11-12T15:21:40Z
dc.date.issued2021
dc.description.abstractThe implementation of information technologies in various spheres of public life dictates the creation of efficient and productive systems for entering information into computer systems. In such systems it is important to build an effective recognition module. At the moment, the most effective method for solving this prob-lem is the use of artificial multilayer neural and convolutional networks. This paper is devoted to a comparative analysis of the recognition results of handwritten characters of the Azerbaijani al-phabet using neural and convolutional neural networks. The results of numerical experiments are given.uk_UA
dc.description.abstractМета роботи. Провести порівняльний аналіз результатів розпізнавання рукодрукованих символів азербайджанського алфавіту за допомогою багатошарових і згорткових нейронних мереж. Результати. Проведено аналіз залежності результатів розпізнавання від наступних параметрів: архітектури нейронних мереж, розміру навчальної бази, вибору алгоритму субдискретизації, використання алгоритму виділення ознак. Для збільшення навчальної вибірки використана техніка аугментації зображень. На основі реальної бази з 14000 символів були утворені бази по 28000, 42000 і 72000 символів. Наведено опис алгоритму виділення ознак.uk_UA
dc.description.abstractЦель работы. Провести сравнительный анализ результатов распознавания рукопечатных символов азербайджанского алфавита с помощью многослойных и сверточных нейронных сетей. Результаты. Проведен анализ зависимости результатов распознавания от следующих параметров: архитектуры нейронных сетей, размера обучающей базы, выбора алгоритма субдискретизации, использования алгоритма выделения признаков. Для увеличения обучающей выборки использована техника аугментации изображений. На основе реальной базы из 14000 символов были образованы базы по 28000, 42000 и 72000 символов. Приведено описание алгоритма выделения признаков.uk_UA
dc.identifier.citationComparative Analysis of the Application of Multilayer and Convolutional Neural Networks for Recognition of Handwritten Letters of the Azerbaijani Alphabet / E. Mustafayev, R. Azimov // Кібернетика та комп’ютерні технології: Зб. наук. пр. — 2021. — № 3. — С. 65-73. — Бібліогр.: 13 назв. — англ.uk_UA
dc.identifier.issn2707-4501
dc.identifier.otherDOI: https://doi.org/10.34229/2707-451X.21.3.6
dc.identifier.udc004.852
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/181351
dc.language.isoenuk_UA
dc.publisherІнститут кібернетики ім. В.М. Глушкова НАН Україниuk_UA
dc.relation.ispartofКібернетика та комп’ютерні технології
dc.statuspublished earlieruk_UA
dc.subjectІнформаційні технології: теорія та інструментальні засобиuk_UA
dc.titleComparative Analysis of the Application of Multilayer and Convolutional Neural Networks for Recognition of Handwritten Letters of the Azerbaijani Alphabetuk_UA
dc.title.alternativeПорівняльний аналіз застосування багатошарових і згорткових нейронних мереж для розпізнавання рукодрукованих літер на прикладі азербайджанського алфавітуuk_UA
dc.title.alternativeСравнительный анализ применения многослойных и сверточных нейронных сетей для распознавания рукопечатных букв на примере азербайджанского алфавитаuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
06-Mustafayev.pdf
Розмір:
638.9 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: