Data assimilation using kalman filter techniques

dc.contributor.authorDimitriu, G.
dc.contributor.authorCuciureanu, R.
dc.date.accessioned2008-08-26T13:22:57Z
dc.date.available2008-08-26T13:22:57Z
dc.date.issued2006
dc.description.abstractKalman filtering represents a powerful framework for solving data assimilation problems. Of interest here are the low-rank filters which are computationally efficient to solve large scale data assimilation problems. The low-rank filters are either based on factorization of the covariance matrix (RRSQRT filter), or approximation of statistics from a finite ensemble (ENKF). A new direction in filter implementation is the use of two filters next to each other of the same form or hybrid (POENKF). The factorization approach is based on the linear Kalman filter which can be extended towards nonlinear models. In this paper, the background, implementation and performance of some common used low-rank filters is discussed. Numerical results are presented.en_US
dc.identifier.citationData assimilation using kalman filter techniques / G. Dimitriu, R. Cuciureanu // Проблеми програмування. — 2006. — N 2-3. — С. 688-693. — Бібліогр.: 5 назв. — англ.en_US
dc.identifier.issn1727-4907
dc.identifier.udc004.75
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/1581
dc.language.isoenen_US
dc.publisherІнститут програмних систем НАН Україниen_US
dc.statuspublished earlieren_US
dc.subjectПрикладне програмне забезпеченняen_US
dc.titleData assimilation using kalman filter techniquesen_US
dc.typeArticleen_US

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
86-Dimitriu.pdf
Розмір:
150.78 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
1.81 KB
Формат:
Item-specific license agreed upon to submission
Опис: