Structure Relations of Classical Orthogonal Polynomials in the Quadratic and q-Quadratic Variable

dc.contributor.authorKenfack Nangho, M.
dc.contributor.authorJordaan, K.
dc.date.accessioned2025-11-28T09:39:20Z
dc.date.issued2018
dc.description.abstractWe prove an equivalence between the existence of the first structure relation satisfied by a sequence of monic orthogonal polynomials {Pₙ}ₙ₌₀ ∞, the orthogonality of the second derivatives {𝔻²ₓPₙ}ₙ₌₂ ∞ , and a generalized Sturm-Liouville type equation. Our treatment of the generalized Bochner theorem leads to explicit solutions of the difference equation [Vinet L., Zhedanov A., J. Comput. Appl. Math. 211 (2008), 45-56], which proves that the only monic orthogonal polynomials that satisfy the first structure relation are Wilson polynomials, continuous dual Hahn polynomials, Askey-Wilson polynomials, and their special or limiting cases as one or more parameters tend to ∞. This work extends our previous result [arXiv:1711.03349] concerning a conjecture due to Ismail. We also derive a second structure relation for polynomials satisfying the first structure relation.
dc.description.sponsorshipThe research of MKN was supported by a Vice-Chancellor’s Postdoctoral Fellowship from the University of Pretoria. The research by KJ was partially supported by the National Research Foundation of South Africa under grant number 108763. MKN thanks the African Institute for Mathematical Sciences, Muizenberg, South Africa, for their hospitality during his research visit in January 2018, where this paper was completed. We thank the referees for their careful consideration of the manuscript and helpful comments.
dc.identifier.citationStructure Relations of Classical Orthogonal Polynomials in the Quadratic and q-Quadratic Variable / M. Kenfack Nangho, K. Jordaan // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 28 назв. — англ.
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2018.126
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 33D45; 33C45; 42C05
dc.identifier.otherarXiv: 1801.10554
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/209878
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleStructure Relations of Classical Orthogonal Polynomials in the Quadratic and q-Quadratic Variable
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
126-Kenfack.pdf
Розмір:
508.43 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: