Knot Complement, ADO Invariants and their Deformations for Torus Knots

dc.contributor.authorChae, John
dc.date.accessioned2025-12-23T13:12:12Z
dc.date.issued2020
dc.description.abstractA relation between the two-variable series knot invariant and the Akutsu-Deguchi-Ohtsuki (ADO) invariant was conjectured recently. We reinforce the conjecture by presenting explicit formulas and/or an algorithm for particular ADO invariants of torus knots obtained from the series invariant of the complement of a knot. Furthermore, one parameter deformation of the ADO₃ polynomial of torus knots is provided.
dc.description.sponsorshipI am grateful to Sergei Gukov for his valuable suggestions on a draft of this paper. I would like thank Angus Gruen for helpful conversations. I am also grateful to the referees for many helpful suggestions.
dc.identifier.citationKnot Complement, ADO Invariants and their Deformations for Torus Knots. John Chae. SIGMA 16 (2020), 134, 16 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2020.134
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 57K14; 57K16; 81R50
dc.identifier.otherarXiv:2007.13277
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211085
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleKnot Complement, ADO Invariants and their Deformations for Torus Knots
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
134-Chae.pdf
Розмір:
400.58 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: