Knot Complement, ADO Invariants and their Deformations for Torus Knots
| dc.contributor.author | Chae, John | |
| dc.date.accessioned | 2025-12-23T13:12:12Z | |
| dc.date.issued | 2020 | |
| dc.description.abstract | A relation between the two-variable series knot invariant and the Akutsu-Deguchi-Ohtsuki (ADO) invariant was conjectured recently. We reinforce the conjecture by presenting explicit formulas and/or an algorithm for particular ADO invariants of torus knots obtained from the series invariant of the complement of a knot. Furthermore, one parameter deformation of the ADO₃ polynomial of torus knots is provided. | |
| dc.description.sponsorship | I am grateful to Sergei Gukov for his valuable suggestions on a draft of this paper. I would like thank Angus Gruen for helpful conversations. I am also grateful to the referees for many helpful suggestions. | |
| dc.identifier.citation | Knot Complement, ADO Invariants and their Deformations for Torus Knots. John Chae. SIGMA 16 (2020), 134, 16 pages | |
| dc.identifier.doi | https://doi.org/10.3842/SIGMA.2020.134 | |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2020 Mathematics Subject Classification: 57K14; 57K16; 81R50 | |
| dc.identifier.other | arXiv:2007.13277 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/211085 | |
| dc.language.iso | en | |
| dc.publisher | Інститут математики НАН України | |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | |
| dc.title | Knot Complement, ADO Invariants and their Deformations for Torus Knots | |
| dc.type | Article |
Файли
Оригінальний контейнер
1 - 1 з 1
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: