Geometry of G-Structures via the Intrinsic Torsion

dc.contributor.authorNiedziałomski, K.
dc.date.accessioned2019-02-18T14:54:45Z
dc.date.available2019-02-18T14:54:45Z
dc.date.issued2016
dc.description.abstractWe study the geometry of a G-structure P inside the oriented orthonormal frame bundle SO(M) over an oriented Riemannian manifold M. We assume that G is connected and closed, so the quotient SO(n)/G, where n=dimM, is a normal homogeneous space and we equip SO(M) with the natural Riemannian structure induced from the structure on M and the Killing form of SO(n). We show, in particular, that minimality of P is equivalent to harmonicity of an induced section of the homogeneous bundle SO(M)×SO(n)SO(n)/G, with a Riemannian metric on M obtained as the pull-back with respect to this section of the Riemannian metric on the considered associated bundle, and to the minimality of the image of this section. We apply obtained results to the case of almost product structures, i.e., structures induced by plane fields.uk_UA
dc.identifier.citationGeometry of G-Structures via the Intrinsic Torsion / K. Niedziałomski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 21 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 53C10; 53C24; 53C43; 53C15
dc.identifier.otherDOI:10.3842/SIGMA.2016.107
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148543
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleGeometry of G-Structures via the Intrinsic Torsionuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
107-Niedziałomski.pdf
Розмір:
398.15 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: